Loading…

Polyhydroxyalkanoate copolymers from forest biomass

The potential for the use of woody biomass in poly-β-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resou...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial microbiology & biotechnology 2006-07, Vol.33 (7), p.616-626
Main Authors: Keenan, T.M, Nakas, J.P, Tanenbaum, S.W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The potential for the use of woody biomass in poly-β-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07-0.67% (w/v)]. Yields of poly(β-hydroxybutyrate-co-β-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, M(v)) from 511-919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (T(m)) and glass transition temperature (T(g)) decreased as a function of 3HVcontent, with T(m) demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25-0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16-52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w/w) PHA contents, and 4-67 mol% 3HV compositions. These data are comparable to copolymer yields and cellular contents reported for hexose plus levulinic acid-based shake-flask cultures, as reported using Alcaligenes eutrophus and Pseudomonas putida. However, our findings presage a conceivable alternative, forestry-based biorefinery approach for the production of value-added biodegradable PHA polymers. Specifically, this review describes the current and potential utilization of lignocellulosic process
ISSN:1367-5435
1476-5535
DOI:10.1007/s10295-006-0131-2