Loading…
Noninvasive characterisation of multiple ventricular events using electrocardiographic imaging
Distributions of epicardial potentials, calculated from body surface electrocardiograms (ECGs), were investigated to determine if they could enable detection of multiple sites of ventricular activity. An anatomical model of the human ventricular myocardium was used to simulate activation sequences i...
Saved in:
Published in: | Medical & biological engineering & computing 2001-07, Vol.39 (4), p.447-454 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distributions of epicardial potentials, calculated from body surface electrocardiograms (ECGs), were investigated to determine if they could enable detection of multiple sites of ventricular activity. An anatomical model of the human ventricular myocardium was used to simulate activation sequences initiated at nine different ventricular pairs of sites. From these sequences, body surface ECGs were simulated at 352 sites on the torso surface and then used to reconstruct epicardial potentials at 202 sites. The criterion for detection of dual ventricular events was the presence of two distinct primary potential minima in the reconstructed epicardial potentials. The shortest distance between the two events in the right ventricle that resulted in the reconstruction of epicardial potential patterns, featuring two minima, was 27 mm; the distance between the two events in the left ventricle was 23 mm. When Gaussian white noise in the simulated body surface potentials was increased from 3 microV to 15 microV and 50 microV, dual events became more difficult to distinguish. Findings indicate that calculated epicardial potentials provide useful visual information about the presence of multiple ventricular events that is not apparent in features of body surface ECGs, and could be particularly helpful in optimising mapping procedures during difficult or unsuccessful radiofrequency ablations of accessory pathways. |
---|---|
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/BF02345367 |