Loading…

resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration

It was previously discovered that the unique structure and chemistry of bacterial cellulose (BC) permits the formation of calcium-deficient hydroxyapatite (CdHAP) nanocrystallites under aqueous conditions at ambient pH and temperature. In this study, BC was chemically modified via a limited periodat...

Full description

Saved in:
Bibliographic Details
Published in:Cellulose (London) 2009, Vol.16 (5), p.887-898
Main Authors: Hutchens, Stacy A, Benson, Roberto S, Evans, Barbara R, Rawn, Claudia J, O'Neill, Hugh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It was previously discovered that the unique structure and chemistry of bacterial cellulose (BC) permits the formation of calcium-deficient hydroxyapatite (CdHAP) nanocrystallites under aqueous conditions at ambient pH and temperature. In this study, BC was chemically modified via a limited periodate oxidation reaction to render the composite degradable and thus more suitable for bone regeneration. While native BC does not degrade in mammalian systems, periodate oxidation yields dialdehyde cellulose which breaks down at physiological pH. The composite was characterized by tensile testing, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. X-ray diffraction showed that oxidized BC retains its structure and could biomimetically form CdHAP. Degradation behavior was analyzed by incubating the samples in simulated physiological fluid (pH 7.4) at 37 °C under static and dynamic conditions. The oxidized BC and oxidized BC-CdHAP composites both lost significant mass after exposure to the simulated physiological environment. Examination of the incubation solutions by UV-Vis spectrophotometric analysis demonstrated that, while native BC released only small amounts of soluble cellulose fragments, oxidized cellulose releases carbonyl containing degradation products as well as soluble cellulose fragments. By entrapping CdHAP in a degradable hydrogel carrier, this composite should elicit bone regeneration then resorb over time to be replaced by new osseous tissue.
ISSN:0969-0239
1572-882X
DOI:10.1007/s10570-009-9300-6