Loading…
resorbable calcium-deficient hydroxyapatite hydrogel composite for osseous regeneration
It was previously discovered that the unique structure and chemistry of bacterial cellulose (BC) permits the formation of calcium-deficient hydroxyapatite (CdHAP) nanocrystallites under aqueous conditions at ambient pH and temperature. In this study, BC was chemically modified via a limited periodat...
Saved in:
Published in: | Cellulose (London) 2009, Vol.16 (5), p.887-898 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It was previously discovered that the unique structure and chemistry of bacterial cellulose (BC) permits the formation of calcium-deficient hydroxyapatite (CdHAP) nanocrystallites under aqueous conditions at ambient pH and temperature. In this study, BC was chemically modified via a limited periodate oxidation reaction to render the composite degradable and thus more suitable for bone regeneration. While native BC does not degrade in mammalian systems, periodate oxidation yields dialdehyde cellulose which breaks down at physiological pH. The composite was characterized by tensile testing, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. X-ray diffraction showed that oxidized BC retains its structure and could biomimetically form CdHAP. Degradation behavior was analyzed by incubating the samples in simulated physiological fluid (pH 7.4) at 37 °C under static and dynamic conditions. The oxidized BC and oxidized BC-CdHAP composites both lost significant mass after exposure to the simulated physiological environment. Examination of the incubation solutions by UV-Vis spectrophotometric analysis demonstrated that, while native BC released only small amounts of soluble cellulose fragments, oxidized cellulose releases carbonyl containing degradation products as well as soluble cellulose fragments. By entrapping CdHAP in a degradable hydrogel carrier, this composite should elicit bone regeneration then resorb over time to be replaced by new osseous tissue. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-009-9300-6 |