Loading…
Thermally Reversible Hydrogels via Intramolecular Folding and Consequent Self-Assembly of a de Novo Designed Peptide
A small de novo designed peptide (MAX3) is described that exhibits complete thermoreversible self-assembly into a hydrogel network. Importantly, a prerequisite to hydrogelation is that the peptide must first fold into a conformation conducive to self-assembly. At ambient temperature, MAX3 is unfolde...
Saved in:
Published in: | Journal of the American Chemical Society 2003-10, Vol.125 (39), p.11802-11803 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A small de novo designed peptide (MAX3) is described that exhibits complete thermoreversible self-assembly into a hydrogel network. Importantly, a prerequisite to hydrogelation is that the peptide must first fold into a conformation conducive to self-assembly. At ambient temperature, MAX3 is unfolded, resulting in a low viscosity aqueous solution. On increasing the temperature, the peptide undergoes a unimolecular folding event, affording an amphiphilic β-hairpin that consequently self-assembles into a hydrogel network. Increasing the temperature serves to dehydrate the nonpolar residues of the unfolded peptide and trigger folding via hydrophobic collapse. Cooling the resultant hydrogel results in β-hairpin unfolding and consequent complete dissolution of the hydrogel. The temperature at which folding and consequent self-assembly into a rigid hydrogel occur can be tuned by altering the hydrophobicity of the peptides. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0353154 |