Loading…

The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase

Peptides corresponding to regions of the calmodulin-activated NO-synthase and of the calmodulin dependent adenylyl cyclase, which could represent the calmodulin binding domains of the two proteins, have been synthesized and tested for calmodulin binding. The chosen peptides were those in the sequenc...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1993-06, Vol.32 (23), p.6081-6088
Main Authors: Vorherr, Thomas, Knoepfel, Lea, Hofmann, Francesco, Mollner, Stefan, Pfeuffer, Thomas, Carafoli, Ernesto
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peptides corresponding to regions of the calmodulin-activated NO-synthase and of the calmodulin dependent adenylyl cyclase, which could represent the calmodulin binding domains of the two proteins, have been synthesized and tested for calmodulin binding. The chosen peptides were those in the sequence of the two proteins which most closely corresponded to the accepted general properties of the calmodulin binding domains, i.e., a hydrophobic sequence containing basic amino acids. In the case of the NO-synthase, the putative high-affinity calmodulin binding domain was identified by urea gel electrophoresis and fluorescence spectroscopy with dansylcalmodulin as peptide NO-30 (amino acids 725-754). The highest affinity calmodulin binding site of the calmodulin-dependent adenylyl cyclase was assigned to peptide AC-28 (amino acids 495-522) by titration with dansylcalmodulin and by the ability to inhibit the calmodulin-stimulated activity of purified calmodulin-stimulated adenylyl cyclase. The sequence 495-522 is located in the unit protruding into the cytosol from the sixth putative transmembrane domain of the molecule. It has the typical hydrophobic/basic composition of canonical calmodulin binding domains, and also contains, like most calmodulin binding domains, an aromatic amino acid in its N-terminal portion. It also contains two Cys residues in the central portion, which is an unusual feature of the calmodulin binding domain of this enzyme.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00074a020