Loading…

Rotational diffusion of calcium-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum: a detailed study

The Ca2+-Mg2+ adenosine-5'-triphosphatase (ATPase) in sarcoplasmic reticulum has been covalently labeled with the phosphorescent triplet probe erythrosinyl 5-isothiocyanate. The rotational diffusion of the protein in the membrane at 25 degrees C was examined by measuring the time dependence of...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1984-12, Vol.23 (26), p.6765-6776
Main Authors: Restall, Colin J, Dale, Robert E, Murray, Elaine K, Gilbert, Charles W, Chapman, Dennis
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a383t-7b9770556d092b706157de14c4bf6501649216504fc85a6d3d775655aeba68233
cites
container_end_page 6776
container_issue 26
container_start_page 6765
container_title Biochemistry (Easton)
container_volume 23
creator Restall, Colin J
Dale, Robert E
Murray, Elaine K
Gilbert, Charles W
Chapman, Dennis
description The Ca2+-Mg2+ adenosine-5'-triphosphatase (ATPase) in sarcoplasmic reticulum has been covalently labeled with the phosphorescent triplet probe erythrosinyl 5-isothiocyanate. The rotational diffusion of the protein in the membrane at 25 degrees C was examined by measuring the time dependence of the phosphorescence emission anisotropy. Detailed analysis of both the total emission S(t) = Iv(t) + 2IH(t) and anisotropy R(t) = [Iv(t) - IH(t)]/[Iv(t) + 2IH(t)] curves shows the presence of multiple components. The latter is incompatible with a simple model of protein movement. The experimental data are consistent with a model in which the sum of four exponential components defines the phosphorescence decay. The anisotropy decay corresponds to a model in which the phosphor itself or a small phosphor-bearing segment reorients on a sub-microsecond time scale about an axis attached to a larger segment, which in turn reorients on a time scale of a few microseconds about an axis fixed in the frame of the ATPase. A fraction of the protein molecules rotate on a time scale of 100-200 microseconds about the normal to the bilayer, while the rest are rotationally stationary, at least on a sub-millisecond time scale.
doi_str_mv 10.1021/bi00321a075
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75899517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75899517</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-7b9770556d092b706157de14c4bf6501649216504fc85a6d3d775655aeba68233</originalsourceid><addsrcrecordid>eNptkc9rFTEQx4Mo9Vk9eRZyEHuQrclufuz2JkVtS8WiVcFLmE2yNHV3s81kwf73Rt7j4aGXmQnfD8PwCSEvOTvmrObv-sBYU3NgWj4iGy5rVomuk4_JhjGmqrpT7Cl5hnhbnoJpcUAOVKF4yzfk7mvMkEOcYaQuDMOKZaZxoBZGG9apcn7xs_NzplBqxDB7Ko-qnMJyE3G5gQzoaZgpQrJxGQGnYGnyOdh1XKcTCtT5DGH0jmJe3f1z8mSAEf2LXT8k3z9-uD49qy6_fDo_fX9ZQdM2udJ9pzWTUjnW1b1m5WLtPBdW9IOSjCvR1bwMYrCtBOUap7VUUoLvQbV10xySN9u9S4p3q8dspoDWjyPMPq5otGyLJK4L-HYL2hQRkx_MksIE6d5wZv4JNv8JLvSr3dq1n7zbszujJX-9ywGLwyHBbAPusVaITom6YNUWC5j9n30M6bdRutHSXF99M59_XF2oXxet-Vn4oy0PFs1tXFP5MHzwwL_tE56L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75899517</pqid></control><display><type>article</type><title>Rotational diffusion of calcium-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum: a detailed study</title><source>ACS CRKN Legacy Archives</source><creator>Restall, Colin J ; Dale, Robert E ; Murray, Elaine K ; Gilbert, Charles W ; Chapman, Dennis</creator><creatorcontrib>Restall, Colin J ; Dale, Robert E ; Murray, Elaine K ; Gilbert, Charles W ; Chapman, Dennis</creatorcontrib><description>The Ca2+-Mg2+ adenosine-5'-triphosphatase (ATPase) in sarcoplasmic reticulum has been covalently labeled with the phosphorescent triplet probe erythrosinyl 5-isothiocyanate. The rotational diffusion of the protein in the membrane at 25 degrees C was examined by measuring the time dependence of the phosphorescence emission anisotropy. Detailed analysis of both the total emission S(t) = Iv(t) + 2IH(t) and anisotropy R(t) = [Iv(t) - IH(t)]/[Iv(t) + 2IH(t)] curves shows the presence of multiple components. The latter is incompatible with a simple model of protein movement. The experimental data are consistent with a model in which the sum of four exponential components defines the phosphorescence decay. The anisotropy decay corresponds to a model in which the phosphor itself or a small phosphor-bearing segment reorients on a sub-microsecond time scale about an axis attached to a larger segment, which in turn reorients on a time scale of a few microseconds about an axis fixed in the frame of the ATPase. A fraction of the protein molecules rotate on a time scale of 100-200 microseconds about the normal to the bilayer, while the rest are rotationally stationary, at least on a sub-millisecond time scale.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00321a075</identifier><identifier>PMID: 6152181</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Animals ; Biological and medical sciences ; Ca(2+) Mg(2+)-ATPase ; Calcium-Transporting ATPases ; Conformational dynamics in molecular biology ; Erythrosine - analogs &amp; derivatives ; Fluorescence Polarization ; Fundamental and applied biological sciences. Psychology ; Isothiocyanates ; Models, Chemical ; Molecular biophysics ; Protein Conformation ; Rabbits ; Sarcoplasmic Reticulum - enzymology</subject><ispartof>Biochemistry (Easton), 1984-12, Vol.23 (26), p.6765-6776</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-7b9770556d092b706157de14c4bf6501649216504fc85a6d3d775655aeba68233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00321a075$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00321a075$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27064,27924,27925,56766,56816</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8449642$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6152181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Restall, Colin J</creatorcontrib><creatorcontrib>Dale, Robert E</creatorcontrib><creatorcontrib>Murray, Elaine K</creatorcontrib><creatorcontrib>Gilbert, Charles W</creatorcontrib><creatorcontrib>Chapman, Dennis</creatorcontrib><title>Rotational diffusion of calcium-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum: a detailed study</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The Ca2+-Mg2+ adenosine-5'-triphosphatase (ATPase) in sarcoplasmic reticulum has been covalently labeled with the phosphorescent triplet probe erythrosinyl 5-isothiocyanate. The rotational diffusion of the protein in the membrane at 25 degrees C was examined by measuring the time dependence of the phosphorescence emission anisotropy. Detailed analysis of both the total emission S(t) = Iv(t) + 2IH(t) and anisotropy R(t) = [Iv(t) - IH(t)]/[Iv(t) + 2IH(t)] curves shows the presence of multiple components. The latter is incompatible with a simple model of protein movement. The experimental data are consistent with a model in which the sum of four exponential components defines the phosphorescence decay. The anisotropy decay corresponds to a model in which the phosphor itself or a small phosphor-bearing segment reorients on a sub-microsecond time scale about an axis attached to a larger segment, which in turn reorients on a time scale of a few microseconds about an axis fixed in the frame of the ATPase. A fraction of the protein molecules rotate on a time scale of 100-200 microseconds about the normal to the bilayer, while the rest are rotationally stationary, at least on a sub-millisecond time scale.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Ca(2+) Mg(2+)-ATPase</subject><subject>Calcium-Transporting ATPases</subject><subject>Conformational dynamics in molecular biology</subject><subject>Erythrosine - analogs &amp; derivatives</subject><subject>Fluorescence Polarization</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isothiocyanates</subject><subject>Models, Chemical</subject><subject>Molecular biophysics</subject><subject>Protein Conformation</subject><subject>Rabbits</subject><subject>Sarcoplasmic Reticulum - enzymology</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNptkc9rFTEQx4Mo9Vk9eRZyEHuQrclufuz2JkVtS8WiVcFLmE2yNHV3s81kwf73Rt7j4aGXmQnfD8PwCSEvOTvmrObv-sBYU3NgWj4iGy5rVomuk4_JhjGmqrpT7Cl5hnhbnoJpcUAOVKF4yzfk7mvMkEOcYaQuDMOKZaZxoBZGG9apcn7xs_NzplBqxDB7Ko-qnMJyE3G5gQzoaZgpQrJxGQGnYGnyOdh1XKcTCtT5DGH0jmJe3f1z8mSAEf2LXT8k3z9-uD49qy6_fDo_fX9ZQdM2udJ9pzWTUjnW1b1m5WLtPBdW9IOSjCvR1bwMYrCtBOUap7VUUoLvQbV10xySN9u9S4p3q8dspoDWjyPMPq5otGyLJK4L-HYL2hQRkx_MksIE6d5wZv4JNv8JLvSr3dq1n7zbszujJX-9ywGLwyHBbAPusVaITom6YNUWC5j9n30M6bdRutHSXF99M59_XF2oXxet-Vn4oy0PFs1tXFP5MHzwwL_tE56L</recordid><startdate>19841218</startdate><enddate>19841218</enddate><creator>Restall, Colin J</creator><creator>Dale, Robert E</creator><creator>Murray, Elaine K</creator><creator>Gilbert, Charles W</creator><creator>Chapman, Dennis</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19841218</creationdate><title>Rotational diffusion of calcium-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum: a detailed study</title><author>Restall, Colin J ; Dale, Robert E ; Murray, Elaine K ; Gilbert, Charles W ; Chapman, Dennis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-7b9770556d092b706157de14c4bf6501649216504fc85a6d3d775655aeba68233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Ca(2+) Mg(2+)-ATPase</topic><topic>Calcium-Transporting ATPases</topic><topic>Conformational dynamics in molecular biology</topic><topic>Erythrosine - analogs &amp; derivatives</topic><topic>Fluorescence Polarization</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isothiocyanates</topic><topic>Models, Chemical</topic><topic>Molecular biophysics</topic><topic>Protein Conformation</topic><topic>Rabbits</topic><topic>Sarcoplasmic Reticulum - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Restall, Colin J</creatorcontrib><creatorcontrib>Dale, Robert E</creatorcontrib><creatorcontrib>Murray, Elaine K</creatorcontrib><creatorcontrib>Gilbert, Charles W</creatorcontrib><creatorcontrib>Chapman, Dennis</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Restall, Colin J</au><au>Dale, Robert E</au><au>Murray, Elaine K</au><au>Gilbert, Charles W</au><au>Chapman, Dennis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotational diffusion of calcium-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum: a detailed study</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1984-12-18</date><risdate>1984</risdate><volume>23</volume><issue>26</issue><spage>6765</spage><epage>6776</epage><pages>6765-6776</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The Ca2+-Mg2+ adenosine-5'-triphosphatase (ATPase) in sarcoplasmic reticulum has been covalently labeled with the phosphorescent triplet probe erythrosinyl 5-isothiocyanate. The rotational diffusion of the protein in the membrane at 25 degrees C was examined by measuring the time dependence of the phosphorescence emission anisotropy. Detailed analysis of both the total emission S(t) = Iv(t) + 2IH(t) and anisotropy R(t) = [Iv(t) - IH(t)]/[Iv(t) + 2IH(t)] curves shows the presence of multiple components. The latter is incompatible with a simple model of protein movement. The experimental data are consistent with a model in which the sum of four exponential components defines the phosphorescence decay. The anisotropy decay corresponds to a model in which the phosphor itself or a small phosphor-bearing segment reorients on a sub-microsecond time scale about an axis attached to a larger segment, which in turn reorients on a time scale of a few microseconds about an axis fixed in the frame of the ATPase. A fraction of the protein molecules rotate on a time scale of 100-200 microseconds about the normal to the bilayer, while the rest are rotationally stationary, at least on a sub-millisecond time scale.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>6152181</pmid><doi>10.1021/bi00321a075</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1984-12, Vol.23 (26), p.6765-6776
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_75899517
source ACS CRKN Legacy Archives
subjects Animals
Biological and medical sciences
Ca(2+) Mg(2+)-ATPase
Calcium-Transporting ATPases
Conformational dynamics in molecular biology
Erythrosine - analogs & derivatives
Fluorescence Polarization
Fundamental and applied biological sciences. Psychology
Isothiocyanates
Models, Chemical
Molecular biophysics
Protein Conformation
Rabbits
Sarcoplasmic Reticulum - enzymology
title Rotational diffusion of calcium-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum: a detailed study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A13%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotational%20diffusion%20of%20calcium-dependent%20adenosine%205'-triphosphatase%20in%20sarcoplasmic%20reticulum:%20a%20detailed%20study&rft.jtitle=Biochemistry%20(Easton)&rft.au=Restall,%20Colin%20J&rft.date=1984-12-18&rft.volume=23&rft.issue=26&rft.spage=6765&rft.epage=6776&rft.pages=6765-6776&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00321a075&rft_dat=%3Cproquest_cross%3E75899517%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a383t-7b9770556d092b706157de14c4bf6501649216504fc85a6d3d775655aeba68233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=75899517&rft_id=info:pmid/6152181&rfr_iscdi=true