Loading…

The oligomycin sensitivity conferring protein (OSCP) of beef heart mitochondria: studies of its binding to F1 and its function

The binding of "oligomycin sensitivity conferring protein" (OSCP) to soluble beef-heart mitochondrial ATPase (F1) has been investigated. OSCP forms a stable complex with F1, and the F1 X OSCP complex is capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-dep...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioenergetics and biomembranes 1984-12, Vol.16 (5-6), p.535-550
Main Authors: Hundal, T, Norling, B, Ernster, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The binding of "oligomycin sensitivity conferring protein" (OSCP) to soluble beef-heart mitochondrial ATPase (F1) has been investigated. OSCP forms a stable complex with F1, and the F1 X OSCP complex is capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted submitochondrial particles. The F1 X OSCP complex retains 50% of its ATPase activity upon cold exposure while free F1 is inactivated by 90% or more. Both free F1 and the F1 X OSCP complex release upon cold exposure a part--probably 1 out of 3--of their beta subunits; whether alpha subunits are also lost is uncertain. The cold-treated F1 X OSCP complex is still capable of restoring oligomycin- and DCCD-sensitive ATPase activity to F1- and OSCP-depleted particles. OSCP also protects F1 against modification of its alpha subunit by mild trypsin treatment. This finding together with the earlier demonstration that trypsin-modified F1 cannot bind OSCP indicates that OSCP binds to the alpha subunit of F1 and that F1 contains three binding sites for OSCP. The results are discussed in relation to the possible role of OSCP in the interaction of F1 with the membrane sector of the mitochondrial ATPase system.
ISSN:0145-479X
1573-6881
DOI:10.1007/BF00743244