Loading…

Antibiosis revisited: bacteriocins produced by dairy starter cultures

Well before the existence of starter bacteria was recognized, their activities were instrumental in preserving dairy foods. During growth in fermented products, dairy starters, including lactobacilli, lactococci, leuconostocs, streptococci, and propionibacteria, produce inhibitory metabolites. Inhib...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 1993-08, Vol.76 (8), p.2366-2379
Main Authors: Barefoot, S.F, Nettles, C.G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Well before the existence of starter bacteria was recognized, their activities were instrumental in preserving dairy foods. During growth in fermented products, dairy starters, including lactobacilli, lactococci, leuconostocs, streptococci, and propionibacteria, produce inhibitory metabolites. Inhibitors include broad-spectrum antagonists, organic acids, diacetyl, and hydrogen peroxide. Some starters also produce bacteriocins or bactericidal proteins active against species that usually are related closely to the producer culture. Several bacteriocins have been biochemically and genetically characterized. Evaluating properties of the Lactobacillus acidophilus bacteriocin, lactacin B, led to a new purification protocol. Purified lactacin B migrates in SDS-PAGE as a single 8100-Da band with inhibitory activity after Coomassie blue staining. Production of lactacin B is enhanced by cultivation of the producer with the sensitive indicator, Lactobacillus delbrueckii ssp. lactis 4797; understanding this interaction may increase knowledge of production of bacteriocins in heterogeneous cultures. Bacteriocins have been recently identified in dairy propionibacteria. Jenseniin G, a bacteriocin produced by Propionibacterium jensenii P126, has narrow activity; propionicin PLG-1 produced by Propionibacterium thoenii P127 inhibits propionibacteria, some fungi, Campylobacter jejuni, and additional pathogens. Better understanding of these antagonists may lead to targeted biocontrol of spoilage flora and foodborne pathogens
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.s0022-0302(93)77574-8