Loading…
Binding of AP-1 Golgi adaptors to membranes requires phosphorylated cytoplasmic domains of the mannose 6-phosphate/insulin-like growth factor II receptor
In mammalian cells, clathrin-coated vesicles mediate transport of the lysosomal enzyme receptors from the trans-Golgi network to the endocytic pathway. A critical step of this process is the recruitment of Golgi-specific adaptors onto Golgi membranes for efficient clathrin polymerization. An in vitr...
Saved in:
Published in: | The Journal of biological chemistry 1993-10, Vol.268 (30), p.22552-22556 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In mammalian cells, clathrin-coated vesicles mediate transport of the lysosomal enzyme receptors from the trans-Golgi network to the endocytic pathway. A critical step of this process is the recruitment of Golgi-specific adaptors onto Golgi membranes for efficient clathrin polymerization. An in vitro assay was used here to quantitate this event in streptolysin-O-permeabilized NRK cells. At 37 degrees C, these interactions are cytosol- and energy-dependent, sensitive to GTP gamma S (guanosine 5'-O-(thiotriphosphate)) and brefeldin A. We report that Golgi-specific adaptor binding is enhanced in mannose 6-phosphate/insulin-like growth factor II (IGF II) receptor-overexpressing cells and reduced in mannose 6-phosphate receptor-deficient cells. Furthermore, adaptor binding is partially inhibited after addition of soluble cytoplasmic domains of the mannose 6-phosphate/IGF II receptor. Almost complete inhibition is only observed when this domain is phosphorylated on serines 2421 and 2492, a major modification acquired during exit of the receptor from the Golgi. These results show that the mannose 6-phosphate/IGF II receptor is part of the components that recruit the Golgi-specific adaptors and that its phosphorylation is an important feature for high affinity interactions with sorting components. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(18)41565-7 |