Loading…
The active site structure of the calcium-containing quinoprotein methanol dehydrogenase
Pyrroloquinoline quinone (PQQ), widely found in nature, serves as the redox cofactor in bacterial methanol dehydrogenase (MEDH), a heterotetrameric enzyme that oxidizes methanol to formaldehyde. The refined structure of MEDH at 2.4-A resolution, based on recently obtained amino acid sequence data, r...
Saved in:
Published in: | Biochemistry (Easton) 1993-12, Vol.32 (48), p.12955-12958 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pyrroloquinoline quinone (PQQ), widely found in nature, serves as the redox cofactor in bacterial methanol dehydrogenase (MEDH), a heterotetrameric enzyme that oxidizes methanol to formaldehyde. The refined structure of MEDH at 2.4-A resolution, based on recently obtained amino acid sequence data, reveals that the PQQ, located in a central channel of the disk-shaped protein, is sandwiched between a Trp side chain and a very unusual vicinal disulfide. A Ca2+ ion forms a bridge between PQQ and the protein molecule, very close to a putative substrate binding pocket. The vicinal disulfide may form during PQQ incorporation and possibly act to hold the latter in place. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00211a002 |