Loading…

Genistein inhibits calcium release by platelet-derived growth factor but not bradykinin or cadmium in human fibroblasts

Cd2+ provokes inositol trisphosphate production and releases stored Ca2+, apparently by binding to a zinc site in the external domain of an orphan receptor. One microM Cd2+ evokes an immediate spike in cytosolic free Ca2+, which is similar to that evoked by bradykinin. Platelet-derived growth factor...

Full description

Saved in:
Bibliographic Details
Published in:Cell biology and toxicology 1993-04, Vol.9 (2), p.141-148
Main Authors: RONG-MING LYU, SMITH, B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cd2+ provokes inositol trisphosphate production and releases stored Ca2+, apparently by binding to a zinc site in the external domain of an orphan receptor. One microM Cd2+ evokes an immediate spike in cytosolic free Ca2+, which is similar to that evoked by bradykinin. Platelet-derived growth factor (PDGF) also increases free Ca2+ in human dermal fibroblasts, but there is a distinct lag before free Ca2+ rises in response to PDGF. Genistein, which selectively inhibits tyrosine kinases, markedly inhibited Ca2+ mobilization evoked by PDGF. Calcium mobilization triggered by cadmium or bradykinin was relatively insensitive to genistein. The PDGF receptor is known to be a tyrosine kinase, which phosphorylates and thereby activates phospholipase C gamma, whereas a G protein couples the bradykinin receptor to another phospholipase C isoform. These findings support the hypothesis that the orphan receptor triggered by cadmium is coupled to phospholipase C via a G protein.
ISSN:0742-2091
1573-6822
DOI:10.1007/BF00757576