Loading…
Detection of functional and dimeric activin A in human marrow microenvironment. Implications for the modulation of erythropoiesis
Activin A, which was initially recognized as a gonadal protein, was implicated in the modulation of erythropoiesis through a paracrine control in the bone marrow microenvironment. Present studies demonstrate that, in contrast to T lymphocytes and cultured skin fibroblasts, human marrow stromal cells...
Saved in:
Published in: | Annals of the New York Academy of Sciences 1994-04, Vol.718 (1), p.285-299 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Activin A, which was initially recognized as a gonadal protein, was implicated in the modulation of erythropoiesis through a paracrine control in the bone marrow microenvironment. Present studies demonstrate that, in contrast to T lymphocytes and cultured skin fibroblasts, human marrow stromal cells produce a functional and dimeric beta A beta A molecule (i.e., activin A). RT-PCR further indicates that both alpha and beta A mRNAs of inhibin A/activin A are produced in human stromal cells. The level of beta A subunit mRNAs, however, is in large excess over that of alpha subunit mRNAs, suggesting the predominant production of beta A beta A dimers, as well as some inhibin A (alpha beta A). It should be noted, however, that the beta A subunit can form dimeric proteins other than activin A, such as activin AB (beta A beta B) and inhibin A (alpha beta A). Hence, the presence of the beta A subunit may not necessarily indicate the production of the activin A molecule in any tissue. Therefore, a special quantitative sandwich ELISA assay specific for the dimeric beta A beta A molecule was developed for the measurement of activin A. With this assay, production of activin A in marrow stromal cells is found to be greatly enhanced by cytokines and inflammatory mediators such as TNF-alpha, IL-1 alpha, and lipopolysaccharide. These studies thus suggest that inflammatory cytokines are the inducers for activin A, probably serving a role of up-regulating activin A production locally in bone marrow microenvironment. At present, activin A is not known to play any role in inflammatory reaction; this study may thus raise the possibility that activin A performs more functions than are currently recognized. Alternatively, the enhanced production of this molecule in the bone marrow microenvironment may be regarded as a compensatory mechanism in host defenses, countering inflammatory mediators that are known to suppress erythropoiesis. |
---|---|
ISSN: | 0077-8923 1749-6632 |
DOI: | 10.1111/j.1749-6632.1994.tb55727.x |