Loading…
A dynamic numerical method for models of renal tubules
We show that an explicit method for solving hyperbolic partial differential equations can be applied to a model of a renal tubule to obtain both dynamic and steady-state solutions. Appropriate implementation of this method eliminates numerical instability arising from reversal of intratubular flow d...
Saved in:
Published in: | Bulletin of mathematical biology 1994-05, Vol.56 (3), p.547-565 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We show that an explicit method for solving hyperbolic partial differential equations can be applied to a model of a renal tubule to obtain both dynamic and steady-state solutions. Appropriate implementation of this method eliminates numerical instability arising from reversal of intratubular flow direction. To obtain second-order convergence in space and time, we employ the recently developed ENO (Essentially Non-Oscillatory) methodology. We present examples of computed flows and concentration profiles in representative model contexts. Finally, we indicate briefly how model tubules may be coupled to construct large-scale simulations of the renal counterflow system. |
---|---|
ISSN: | 0092-8240 1522-9602 |
DOI: | 10.1007/BF02460470 |