Loading…
Characterization of Natural Killer Cells With Antileukemia Activity Following Allogeneic Bone Marrow Transplantation
To identify cells with potential antileukemia activity following bone marrow transplantation, we have monitored immunologic reconstitution in a patient with acute lymphocytic leukemia in second remission who received intensive chemotherapy and total body irradiation followed by infusion of allogenei...
Saved in:
Published in: | Blood 1986-03, Vol.67 (3), p.722-728 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To identify cells with potential antileukemia activity following bone marrow transplantation, we have monitored immunologic reconstitution in a patient with acute lymphocytic leukemia in second remission who received intensive chemotherapy and total body irradiation followed by infusion of allogeneic histocompatible marrow. Prior to transplantation, donor bone marrow cells were depleted of T lymphocytes by in vitro treatment with anti-T12 monoclonal antibody and rabbit complement. In the first 3 weeks following bone marrow transplantation, the predominant regenerating mononuclear cell population in peripheral blood exhibited a phenotype characteristic of natural killer (NK) cells. After 4 weeks, T lymphocytes became predominant, but NK cells persisted. Cultured peripheral blood lymphocytes obtained 12 weeks posttransplant were able to display significant cytotoxicity against leukemic blasts that had been cryopreserved at the time of relapse 5 months prior to bone marrow transplantation. To further characterize those cells with antileukemia activity, we used in vitro cloning techniques to identify four monoclonal populations, termed TC12, -48, -50, and -59, with strong antitumor activity. Cytogenetic analysis demonstrated that each clone was of donor origin. Phenotypic characterization showed that the four clones expressed NKH1A but did not express T3, T4, or T8 antigens. Three of the four clones expressed T11 /E rosette antigen. Each clone exhibited strong cytotoxicity against genetically unrelated hematopoietic tumor cell lines such as K562, Molt-4, JM, and U937. In addition, we found that these patient clones were similar to cloned NK cells previously derived from normal individuals. Taken together, these results suggest that at least some clones with antileukemia activity following bone marrow transplantation are cells with NK-like function and phenotype. Functional analysis of these cytolytic cells in larger numbers of patients will be necessary to determine the clinical significance of this finding. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood.V67.3.722.722 |