Loading…
Specificity determinants for the interaction of λ repressor and P22 repressor dimers
The related phage lambda and phage P22 repressors each bind cooperatively to adjacent and separated operator sites, an interaction that involves a pair of repressor dimers. The specificities of these interactions differ: Each dimer interacts with its own type but not with dimers of the heterologous...
Saved in:
Published in: | Genes & development 1994-05, Vol.8 (10), p.1212-1223 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The related phage lambda and phage P22 repressors each bind cooperatively to adjacent and separated operator sites, an interaction that involves a pair of repressor dimers. The specificities of these interactions differ: Each dimer interacts with its own type but not with dimers of the heterologous repressor. The two repressors exhibit significant amino acid sequence homology in their carboxy-terminal domains, which are responsible for both dimer formation and the dimer-dimer interaction. Here, we identify a collection of amino acid substitutions that disrupt the protein-protein interaction of DNA-bound lambda repressor dimers and show that several of these substitutions have the same effect when introduced at the corresponding positions of P22 repressor. We use this information to construct a variant of the lambda repressor bearing only six non-wild-type amino acids that has a switched specificity; that is, it binds cooperatively with P22 repressor, but not with wild-type lambda repressor. These results identify a series of residues that determine the specificities of the two interactions. |
---|---|
ISSN: | 0890-9369 1549-5477 |
DOI: | 10.1101/gad.8.10.1212 |