Loading…

Acidic pH of the lateral intercellular spaces of MDCK cells cultured on permeable supports

The pH of the lateral intercellular space (LIS) of Madin-Darby canine kidney (MDCK) cell monolayers grown on permeable supports was investigated by microspectrofluorimetry using BCECF (2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein). The permeability of the support was selectively reduced...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of membrane biology 1994-06, Vol.140 (2), p.89-99
Main Authors: CHATTON, J.-Y, SPRING, K. R
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pH of the lateral intercellular space (LIS) of Madin-Darby canine kidney (MDCK) cell monolayers grown on permeable supports was investigated by microspectrofluorimetry using BCECF (2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein). The permeability of the support was selectively reduced by growing Zn-Al-silicate crystals inside its pores. The diffusion of BCECF across the filter was sufficiently retarded to allow measurements of fluorescence in the LIS. The LIS pH and intracellular pH of the cells surrounding them were determined in HEPES-buffered solutions. When the perfusate pH was 7.4, the LIS pH was more acidic (7.06 +/- 0.02) and equaled the cytoplasmic pH (7.08 +/- 0.05). When perfusate was changed to pH 7.0 or 7.8, the LIS changed linearly by about half the magnitude of the perfusate pH. Intracellular pH followed LIS pH variations between perfusate pH 7.0 and 7.4 but was significantly higher when perfusate pH was 7.8. Tight junctional H+ permeability was undetectably low. The low steady-state pH in the LIS was not altered by inhibitors of acid transport or low temperature. Rapid perturbations of pH in the LIS showed that protons were not immobilized in the LIS. The acidic microenvironment within the LIS may be the result of buffering by the cell surface proteins.
ISSN:0022-2631
1432-1424
DOI:10.1007/BF00232897