Loading…
Stability of thrombosis induced by electrocoagulation of rat middle cerebral artery
Although it is often assumed in experimental stroke studies that cautery-induced occlusion is permanent, surgeons commonly expect cauterized vessels to recanalize spontaneously. We used the rat middle cerebral artery to determine if electrocoagulation would produce a permanent occlusion in this prep...
Saved in:
Published in: | Stroke (1970) 1994-11, Vol.25 (11), p.2241-2245 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although it is often assumed in experimental stroke studies that cautery-induced occlusion is permanent, surgeons commonly expect cauterized vessels to recanalize spontaneously. We used the rat middle cerebral artery to determine if electrocoagulation would produce a permanent occlusion in this preparation.
A standard bipolar coagulator, calibrated to determine actual power output, was adjusted to induce platelet aggregation in the middle cerebral artery of anesthetized Sprague-Dawley rats without inducing bleeding through the arterial wall. A reliable temporary thrombosis was induced by a Malis Bipolar Coagulator set to deliver 10 bursts of 1.5 seconds each at a rate of 24 min-1 and a power setting of 3 W. This thrombus was responsive to the antithrombotic agent flunarizine. An apparently permanent occlusion was produced by 30 bursts at 3 W followed by 20 bursts at 5 W. To our surprise, seven of seven such occlusions recanalized spontaneously within 4 hours.
The electrocoagulation process commonly used in experimental stroke studies may produce only a temporary occlusion of the rat middle cerebral artery. |
---|---|
ISSN: | 0039-2499 1524-4628 |
DOI: | 10.1161/01.str.25.11.2241 |