Loading…

Drug excretion mediated by a new prototype of polyspecific transporter

CATIONIC drugs of different types and structures (antihistaminics, antiarrhythmics, sedatives, opiates, cytostatics and antibiotics, for example) are excreted in mammals by epithelial cells of the renal proximal tubules and by hepatocytes in the liver l–4 . In the proximal tubules, two functionally...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1994-12, Vol.372 (6506), p.549-552
Main Authors: Gründemann, Dirk, Gorboulev, Valentin, Gambaryan, Stepan, Veyhl, Maike, Koepsell, Hermann
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:CATIONIC drugs of different types and structures (antihistaminics, antiarrhythmics, sedatives, opiates, cytostatics and antibiotics, for example) are excreted in mammals by epithelial cells of the renal proximal tubules and by hepatocytes in the liver l–4 . In the proximal tubules, two functionally disparate transport systems are involved which are localized in the basolateral and luminal plasma membrane and are different from the previously identified neuronal monoamine transporters and ATP-dependent multidrug exporting proteins 1–3,5–12 . Here we report the isolation of a complementary DNA from rat kidney that encodes a 556-amino-acid membrane protein, OCT1, which has the functional characteristics of organic cation uptake over the basolateral membrane of renal proximal tubules and of organic cation uptake into hepatocytes. OCT1 is not homologous to any other known protein and is found in kidney, liver and intestine. As OCT1 translocates hydrophobic and hydrophilic organic cations of different structures, it is considered to be a new prototype of polyspecific transporters that are important for drug elimination.
ISSN:0028-0836
1476-4687
DOI:10.1038/372549a0