Loading…

Molecular cloning of a mammalian hyaluronidase reveals identity with hemopexin, a serum heme-binding protein

Hyaluronan is the most abundant glycosaminoglycan of the extracellular matrix and is a critical substrate for cellular attachment and locomotion. Little is known about the class of enzymes, termed hyaluronidases, that are responsible for hyaluronan catabolism in mammals. We have determined a partial...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1994-12, Vol.269 (51), p.32092-32097
Main Authors: Zhu, L, Hope, T J, Hall, J, Davies, A, Stern, M, Muller-Eberhard, U, Stern, R, Parslow, T G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyaluronan is the most abundant glycosaminoglycan of the extracellular matrix and is a critical substrate for cellular attachment and locomotion. Little is known about the class of enzymes, termed hyaluronidases, that are responsible for hyaluronan catabolism in mammals. We have determined a partial amino acid sequence from a purified preparation of porcine liver hyaluronidase and have used this information as the basis for cloning complementary DNA that encodes the corresponding protein. When expressed in a recombinant baculovirus system, the protein exhibited hyaluronidase activity in a substrate-gel assay. The deduced sequence of this mammalian hyaluronidase is that of a 459-amino-acid polypeptide bearing four potential N-glycosylation sites as well as a copy of a proposed hyaluronan binding motif. Remarkably, amino acid sequence comparisons and immunologic cross-reactivities strongly suggest that the cloned protein is identical to hemopexin, an abundant, heme-binding serum protein. Although hemopexin has not previously been reported to possess any enzymatic activity, it includes a conserved domain found in collagenases, stromelysins, and other enzymes that metabolize the extracellular matrix. We conclude that hemopexin is the predominant hyaluronidase expressed in mammalian liver.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)31605-3