Loading…
Estimation of the Number of “True” Null Hypotheses in Multivariate Analysis of Neuroimaging Data
The repeated testing of a null univariate hypothesis in each of many sites (either regions of interest or voxels) is a common approach to the statistical analysis of brain functional images. Procedures, such as the Bonferroni, are available to maintain the Type I error of the set of tests at a speci...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2001-05, Vol.13 (5), p.920-930 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The repeated testing of a null univariate hypothesis in each of many sites (either regions of interest or voxels) is a common approach to the statistical analysis of brain functional images. Procedures, such as the Bonferroni, are available to maintain the Type I error of the set of tests at a specified level. An initial assumption of these methods is a “global null hypothesis,” i.e., the statistics computed on each site are assumed to be generated by null distributions. This framework may be too conservative when a significant proportion of the sites is affected by the experimental manipulation. This report presents the development of a rigorous statistical procedure for use with a previously reported graphical method, the P plot, for estimation of the number of “true” null hypotheses in the set. This estimate can then be used to sharpen existing multiple comparison procedures. Performance of the P plot method in the multiple comparison problem is investigated in simulation studies and in the analysis of autoradiographic data. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1006/nimg.2001.0764 |