Loading…
Mathematical modeling of the onset of capillary formation initiating angiogenesis
It is well accepted that neo-vascular formation can be divided into three main stages (which may be overlapping): (1) changes within the existing vessel, (2) formation of a new channel, (3) maturation of the new vessel. In this paper we present a new approach to angiogenesis, based on the theory of...
Saved in:
Published in: | Journal of mathematical biology 2001-03, Vol.42 (3), p.195-238 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is well accepted that neo-vascular formation can be divided into three main stages (which may be overlapping): (1) changes within the existing vessel, (2) formation of a new channel, (3) maturation of the new vessel. In this paper we present a new approach to angiogenesis, based on the theory of reinforced random walks, coupled with a Michaelis-Menten type mechanism which views the endothelial cell receptors as the catalyst for transforming angiogenic factor into proteolytic enzyme in order to model the first stage. In this model, a single layer of endothelial cells is separated by a vascular wall from an extracellular tissue matrix. A coupled system of ordinary and partial differential equations is derived which, in the presence of an angiogenic agent, predicts the aggregation of the endothelial cells and the collapse of the vascular lamina, opening a passage into the extracellular matrix. We refer to this as the onset of vascular sprouting. Some biological evidence for the correctness of our model is indicated by the formation of teats in utero. Further evidence for the correctness of the model is given by its prediction that endothelial cells will line the nascent capillary at the onset of capillary angiogenesis. |
---|---|
ISSN: | 0303-6812 1432-1416 |
DOI: | 10.1007/s002850000037 |