Loading…
Activation of the Myogenin Promoter During Mouse Embryogenesis in the Absence of Positive Autoregulation
Myogenin, a member of the MyoD family of helix-loop-helix proteins, can induce myogenesis in a wide range of cell types. In addition to activating muscle structural genes, members of the MyoD family can autoactivate their own and cross-activate one another's expression in transfected cells. Thi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1995-01, Vol.92 (2), p.561-565 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Myogenin, a member of the MyoD family of helix-loop-helix proteins, can induce myogenesis in a wide range of cell types. In addition to activating muscle structural genes, members of the MyoD family can autoactivate their own and cross-activate one another's expression in transfected cells. This has led to the hypothesis that autoregulatory loops among these factors provide a mechanism for amplifying and maintaining the muscle-specific gene expression program in vivo. Here, we make use of myogenin-null mice to directly test this hypothesis. To investigate whether the myogenin protein autoregulates the myogenin gene during embryogenesis, we introduced a myogenin-lacZ transgene into mice harboring a null mutation at the myogenin locus. Despite a severe deficiency of skeletal muscle in myogenin-null neonates, the myogenin-lacZ transgene was expressed normally in myogenic cells throughout embryogenesis. These results show that myogenin is not required for regulation of the myogenin gene and argue against the existence of a myogenin autoregulatory loop in the embryo. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.92.2.561 |