Loading…
Proximity judgments in color space: Tests of a Euclidean color geometry
We describe two tests of the hypothesis that human judgments of the proximity of colors are consistent with a Euclidean geometry on color matching space. The first test uses proximity judgments to measure the angle between any two intersecting lines in color space. Pairwise estimates of the angles b...
Saved in:
Published in: | Vision research (Oxford) 1995-03, Vol.35 (6), p.827-835 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe two tests of the hypothesis that human judgments of the proximity of colors are consistent with a Euclidean geometry on color matching space. The first test uses proximity judgments to measure the angle between any two intersecting lines in color space. Pairwise estimates of the angles between three lines in a plane were made in order to test the additivity of angles. Three different color proximity tasks were considered. Additivity failed for each of the three proximity tasks. Secondly, we tested a prediction concerning the growth of the variability of judgments of similarity with the distance between the test and reference stimuli. The Euclidean hypothesis was also rejected by this test. The results concerning the growth of variability are consistent with the assumption that observers use a city-block metric when judging the proximity of colored lights. |
---|---|
ISSN: | 0042-6989 1878-5646 |
DOI: | 10.1016/0042-6989(94)00170-Q |