Loading…

Acetyl- l-carnitine corrects the altered peripheral nerve function of experimental diabetes

Acetyl- l-carnitine (ALC) has been shown to facilitate the repair of transected sciatic nerves. The effect of ALC (50 mg/kg/d) on the diminished nerve conduction velocity (NCV) of rats with streptozotocin (STZ)-induced hyperglycemia of 3 weeks' duration was evaluated. The aldose reductase inhib...

Full description

Saved in:
Bibliographic Details
Published in:Metabolism, clinical and experimental clinical and experimental, 1995-05, Vol.44 (5), p.677-680
Main Authors: Lowitt, S., Malone, J.I., Salem, A.F., Korthals, J., Benford, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acetyl- l-carnitine (ALC) has been shown to facilitate the repair of transected sciatic nerves. The effect of ALC (50 mg/kg/d) on the diminished nerve conduction velocity (NCV) of rats with streptozotocin (STZ)-induced hyperglycemia of 3 weeks' duration was evaluated. The aldose reductase inhibitor, sorbinil, which is reported to normalize the impaired NCV associated with experimental diabetes, was used as a positive control. Aldose reductase inhibitors are thought to have an effect by decreasing peripheral nerve sorbitol content and increasing nerve myo-inositol. Treatment of STZ-diabetic rats with either ALC or sorbinil resulted in normal NCV. Sorbinil treatment was associated with normalized sciatic nerve sorbitol and myo-inositol; ALC treatment did not reduce the elevated sorbitol levels, but sciatic nerve myo-inositol content was no different from nondiabetic levels. Both ALC and sorbinil treatment of STZ-diabetic rats were associated with a reduction in the elevated malondialdehyde (MDA) content of diabetic sciatic nerve, indicating reduced lipid peroxidation. The beneficial effects of sorbinil and ALC on the altered peripheral nerve function associated with diabetes were similar, but their effects on the polyol pathway (frequently implicated in the pathogenesis of peripheral neuropathy) were different.
ISSN:0026-0495
1532-8600
DOI:10.1016/0026-0495(95)90128-0