Loading…

Nucleotide sequence and evolution of the Orangutan ε globin gene region and surrounding Alu repeats

We have mapped and sequenced the epsilon globin gene and seven surrounding Alu repeat sequences in the orangutan beta globin gene cluster and have compared these and other orangutan sequences to orthologously related human sequences. Noncoding flanking and intron sequences, synonymous sites of alpha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular evolution 1986-01, Vol.24 (1-2), p.94-102
Main Authors: KOOP, B. F, MIYAMOTO, M. M, EMBURY, J. E, GOODMAN, M, CZELUSNIAK, J, SLIGHTOM, J. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c342t-87d32219dc70975e841ccad98e826a77982f5ae6b1bdc446c65dc9b27589903d3
cites cdi_FETCH-LOGICAL-c342t-87d32219dc70975e841ccad98e826a77982f5ae6b1bdc446c65dc9b27589903d3
container_end_page 102
container_issue 1-2
container_start_page 94
container_title Journal of molecular evolution
container_volume 24
creator KOOP, B. F
MIYAMOTO, M. M
EMBURY, J. E
GOODMAN, M
CZELUSNIAK, J
SLIGHTOM, J. L
description We have mapped and sequenced the epsilon globin gene and seven surrounding Alu repeat sequences in the orangutan beta globin gene cluster and have compared these and other orangutan sequences to orthologously related human sequences. Noncoding flanking and intron sequences, synonymous sites of alpha, gamma, and epsilon globin coding regions, and Alu sequences in human and orangutan diverge by 3.2%, 2.7%, and 3.7%, respectively. These values compare to 3.6% from DNA hybridizations and 3.4% from the psi eta globin gene region. If as suggested by fossil evidence and "molecular clock" calculations, human and orangutan lineages diverged about 10-15 MYA, the rate of noncoding DNA evolution in the two species is 1.0-1.5 X 10(-9) substitutions per site per year. We found no evidence for either the addition or deletion of Alu sequences from the beta globin gene cluster nor is there any evidence for recent concerted evolution among the Alu sequences examined. Both phylogenetic and phenetic distance analyses suggest that Alu sequences within the alpha and beta globin gene clusters arose close to the time of simian and prosimian primate divergence (about 50-60 MYA). We conclude that Alu sequences have been evolving at the rate typical of noncoding DNA for the majority of primate history.
doi_str_mv 10.1007/BF02099956
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_77295034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>77295034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-87d32219dc70975e841ccad98e826a77982f5ae6b1bdc446c65dc9b27589903d3</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EKqWwsCN5QAxIAf8ljseCKCAhWGCOHPsmBKV2sWMkHozX4JlIRVVGlnuH79xPugehY0ouKCHy8mpBGFFK5cUOmlLBWbYeu2hKCGMZK4XYRwcxvhFCZa74BE044ZQzOkX2MZke_NBZwBHeEzgDWDuL4cP3aei8w77Bwyvgp6Bdmwbt8PcXbntfdw634AAHaNfY-iimEHxytnMtnvdpjFagh3iI9hrdRzja7Bl6Wdw8X99lD0-399fzh8xwwYaslJYzRpU1kiiZQymoMdqqEkpWaClVyZpcQ1HT2hohClPk1qiaybxUinDLZ-jst3cV_PhKHKplFw30vXbgU6ykZConXPwLUlHwvKByBM9_QRN8jAGaahW6pQ6fFSXV2n31536ETzatqV6C3aIb2WN-usl1NLpvRqGmi1usZIxwXvAfNlKLmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14635617</pqid></control><display><type>article</type><title>Nucleotide sequence and evolution of the Orangutan ε globin gene region and surrounding Alu repeats</title><source>Springer LINK Archives</source><creator>KOOP, B. F ; MIYAMOTO, M. M ; EMBURY, J. E ; GOODMAN, M ; CZELUSNIAK, J ; SLIGHTOM, J. L</creator><creatorcontrib>KOOP, B. F ; MIYAMOTO, M. M ; EMBURY, J. E ; GOODMAN, M ; CZELUSNIAK, J ; SLIGHTOM, J. L</creatorcontrib><description>We have mapped and sequenced the epsilon globin gene and seven surrounding Alu repeat sequences in the orangutan beta globin gene cluster and have compared these and other orangutan sequences to orthologously related human sequences. Noncoding flanking and intron sequences, synonymous sites of alpha, gamma, and epsilon globin coding regions, and Alu sequences in human and orangutan diverge by 3.2%, 2.7%, and 3.7%, respectively. These values compare to 3.6% from DNA hybridizations and 3.4% from the psi eta globin gene region. If as suggested by fossil evidence and "molecular clock" calculations, human and orangutan lineages diverged about 10-15 MYA, the rate of noncoding DNA evolution in the two species is 1.0-1.5 X 10(-9) substitutions per site per year. We found no evidence for either the addition or deletion of Alu sequences from the beta globin gene cluster nor is there any evidence for recent concerted evolution among the Alu sequences examined. Both phylogenetic and phenetic distance analyses suggest that Alu sequences within the alpha and beta globin gene clusters arose close to the time of simian and prosimian primate divergence (about 50-60 MYA). We conclude that Alu sequences have been evolving at the rate typical of noncoding DNA for the majority of primate history.</description><identifier>ISSN: 0022-2844</identifier><identifier>EISSN: 1432-1432</identifier><identifier>DOI: 10.1007/BF02099956</identifier><identifier>PMID: 3031321</identifier><identifier>CODEN: JMEVAU</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Biological and medical sciences ; Biological Evolution ; DNA Restriction Enzymes ; Fundamental and applied biological sciences. Psychology ; Genes, Regulator ; Genetics of eukaryotes. Biological and molecular evolution ; Globins - genetics ; Hominidae - genetics ; Humans ; Phylogeny ; Pongo pygmaeus ; Pongo pygmaeus - genetics ; Repetitive Sequences, Nucleic Acid ; Species Specificity</subject><ispartof>Journal of molecular evolution, 1986-01, Vol.24 (1-2), p.94-102</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-87d32219dc70975e841ccad98e826a77982f5ae6b1bdc446c65dc9b27589903d3</citedby><cites>FETCH-LOGICAL-c342t-87d32219dc70975e841ccad98e826a77982f5ae6b1bdc446c65dc9b27589903d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8220336$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3031321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KOOP, B. F</creatorcontrib><creatorcontrib>MIYAMOTO, M. M</creatorcontrib><creatorcontrib>EMBURY, J. E</creatorcontrib><creatorcontrib>GOODMAN, M</creatorcontrib><creatorcontrib>CZELUSNIAK, J</creatorcontrib><creatorcontrib>SLIGHTOM, J. L</creatorcontrib><title>Nucleotide sequence and evolution of the Orangutan ε globin gene region and surrounding Alu repeats</title><title>Journal of molecular evolution</title><addtitle>J Mol Evol</addtitle><description>We have mapped and sequenced the epsilon globin gene and seven surrounding Alu repeat sequences in the orangutan beta globin gene cluster and have compared these and other orangutan sequences to orthologously related human sequences. Noncoding flanking and intron sequences, synonymous sites of alpha, gamma, and epsilon globin coding regions, and Alu sequences in human and orangutan diverge by 3.2%, 2.7%, and 3.7%, respectively. These values compare to 3.6% from DNA hybridizations and 3.4% from the psi eta globin gene region. If as suggested by fossil evidence and "molecular clock" calculations, human and orangutan lineages diverged about 10-15 MYA, the rate of noncoding DNA evolution in the two species is 1.0-1.5 X 10(-9) substitutions per site per year. We found no evidence for either the addition or deletion of Alu sequences from the beta globin gene cluster nor is there any evidence for recent concerted evolution among the Alu sequences examined. Both phylogenetic and phenetic distance analyses suggest that Alu sequences within the alpha and beta globin gene clusters arose close to the time of simian and prosimian primate divergence (about 50-60 MYA). We conclude that Alu sequences have been evolving at the rate typical of noncoding DNA for the majority of primate history.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>DNA Restriction Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Regulator</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Globins - genetics</subject><subject>Hominidae - genetics</subject><subject>Humans</subject><subject>Phylogeny</subject><subject>Pongo pygmaeus</subject><subject>Pongo pygmaeus - genetics</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Species Specificity</subject><issn>0022-2844</issn><issn>1432-1432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EKqWwsCN5QAxIAf8ljseCKCAhWGCOHPsmBKV2sWMkHozX4JlIRVVGlnuH79xPugehY0ouKCHy8mpBGFFK5cUOmlLBWbYeu2hKCGMZK4XYRwcxvhFCZa74BE044ZQzOkX2MZke_NBZwBHeEzgDWDuL4cP3aei8w77Bwyvgp6Bdmwbt8PcXbntfdw634AAHaNfY-iimEHxytnMtnvdpjFagh3iI9hrdRzja7Bl6Wdw8X99lD0-399fzh8xwwYaslJYzRpU1kiiZQymoMdqqEkpWaClVyZpcQ1HT2hohClPk1qiaybxUinDLZ-jst3cV_PhKHKplFw30vXbgU6ykZConXPwLUlHwvKByBM9_QRN8jAGaahW6pQ6fFSXV2n31536ETzatqV6C3aIb2WN-usl1NLpvRqGmi1usZIxwXvAfNlKLmA</recordid><startdate>19860101</startdate><enddate>19860101</enddate><creator>KOOP, B. F</creator><creator>MIYAMOTO, M. M</creator><creator>EMBURY, J. E</creator><creator>GOODMAN, M</creator><creator>CZELUSNIAK, J</creator><creator>SLIGHTOM, J. L</creator><general>Springer</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19860101</creationdate><title>Nucleotide sequence and evolution of the Orangutan ε globin gene region and surrounding Alu repeats</title><author>KOOP, B. F ; MIYAMOTO, M. M ; EMBURY, J. E ; GOODMAN, M ; CZELUSNIAK, J ; SLIGHTOM, J. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-87d32219dc70975e841ccad98e826a77982f5ae6b1bdc446c65dc9b27589903d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>DNA Restriction Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Regulator</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Globins - genetics</topic><topic>Hominidae - genetics</topic><topic>Humans</topic><topic>Phylogeny</topic><topic>Pongo pygmaeus</topic><topic>Pongo pygmaeus - genetics</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KOOP, B. F</creatorcontrib><creatorcontrib>MIYAMOTO, M. M</creatorcontrib><creatorcontrib>EMBURY, J. E</creatorcontrib><creatorcontrib>GOODMAN, M</creatorcontrib><creatorcontrib>CZELUSNIAK, J</creatorcontrib><creatorcontrib>SLIGHTOM, J. L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KOOP, B. F</au><au>MIYAMOTO, M. M</au><au>EMBURY, J. E</au><au>GOODMAN, M</au><au>CZELUSNIAK, J</au><au>SLIGHTOM, J. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleotide sequence and evolution of the Orangutan ε globin gene region and surrounding Alu repeats</atitle><jtitle>Journal of molecular evolution</jtitle><addtitle>J Mol Evol</addtitle><date>1986-01-01</date><risdate>1986</risdate><volume>24</volume><issue>1-2</issue><spage>94</spage><epage>102</epage><pages>94-102</pages><issn>0022-2844</issn><eissn>1432-1432</eissn><coden>JMEVAU</coden><abstract>We have mapped and sequenced the epsilon globin gene and seven surrounding Alu repeat sequences in the orangutan beta globin gene cluster and have compared these and other orangutan sequences to orthologously related human sequences. Noncoding flanking and intron sequences, synonymous sites of alpha, gamma, and epsilon globin coding regions, and Alu sequences in human and orangutan diverge by 3.2%, 2.7%, and 3.7%, respectively. These values compare to 3.6% from DNA hybridizations and 3.4% from the psi eta globin gene region. If as suggested by fossil evidence and "molecular clock" calculations, human and orangutan lineages diverged about 10-15 MYA, the rate of noncoding DNA evolution in the two species is 1.0-1.5 X 10(-9) substitutions per site per year. We found no evidence for either the addition or deletion of Alu sequences from the beta globin gene cluster nor is there any evidence for recent concerted evolution among the Alu sequences examined. Both phylogenetic and phenetic distance analyses suggest that Alu sequences within the alpha and beta globin gene clusters arose close to the time of simian and prosimian primate divergence (about 50-60 MYA). We conclude that Alu sequences have been evolving at the rate typical of noncoding DNA for the majority of primate history.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>3031321</pmid><doi>10.1007/BF02099956</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2844
ispartof Journal of molecular evolution, 1986-01, Vol.24 (1-2), p.94-102
issn 0022-2844
1432-1432
language eng
recordid cdi_proquest_miscellaneous_77295034
source Springer LINK Archives
subjects Amino Acid Sequence
Animals
Base Sequence
Biological and medical sciences
Biological Evolution
DNA Restriction Enzymes
Fundamental and applied biological sciences. Psychology
Genes, Regulator
Genetics of eukaryotes. Biological and molecular evolution
Globins - genetics
Hominidae - genetics
Humans
Phylogeny
Pongo pygmaeus
Pongo pygmaeus - genetics
Repetitive Sequences, Nucleic Acid
Species Specificity
title Nucleotide sequence and evolution of the Orangutan ε globin gene region and surrounding Alu repeats
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleotide%20sequence%20and%20evolution%20of%20the%20Orangutan%20%CE%B5%20globin%20gene%20region%20and%20surrounding%20Alu%20repeats&rft.jtitle=Journal%20of%20molecular%20evolution&rft.au=KOOP,%20B.%20F&rft.date=1986-01-01&rft.volume=24&rft.issue=1-2&rft.spage=94&rft.epage=102&rft.pages=94-102&rft.issn=0022-2844&rft.eissn=1432-1432&rft.coden=JMEVAU&rft_id=info:doi/10.1007/BF02099956&rft_dat=%3Cproquest_cross%3E77295034%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c342t-87d32219dc70975e841ccad98e826a77982f5ae6b1bdc446c65dc9b27589903d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14635617&rft_id=info:pmid/3031321&rfr_iscdi=true