Loading…

Triiodo-L-thyronine enhances TRH-induced TSH release from perifused rat pituitaries and intracellular Ca2+ levels from dispersed pituitary cells

There is now increasing evidence that Ca2+ serves as the first messenger for the prompt and non-genomic effects of 3,5,3' triiodo-L-thyronine (T3) in several tissues. We have previously shown that the first phase of thyroid stimulating hormone (TSH) release in response to thyrotropin-releasing...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 1995-04, Vol.289 (2), p.205-215
Main Authors: ROUSSEL, J.-P, GRAZZINI, E, ZUMBIHL, R, RODRIGUEZ, E, ASTIER, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is now increasing evidence that Ca2+ serves as the first messenger for the prompt and non-genomic effects of 3,5,3' triiodo-L-thyronine (T3) in several tissues. We have previously shown that the first phase of thyroid stimulating hormone (TSH) release in response to thyrotropin-releasing hormone (TRH) can be potentiated by messengers of hypothalamic origin, by a Ca(2+)-dependent phenomenon involving the activation of dihydropyridine-sensitive Ca2+ channels. By perifusing rat pituitary fragments, we have investigated whether T3 would modify TSH release when the hormone is applied for a short time (i.e. 30 min) before a 6 min pulse of physiological concentration of TRH, thus excluding the genomic effect of T3. We show that: (1) increasing concentrations of T3 (100 nM-10 microM) in the perifused medium potentiates the TRH-induced TSH release in a dose-dependent manner; (2) the T3 potentiation is not reproduced by diiodothyronine and T3 does not potentiate the increase if TSH release induced by a depolarizing concentration of KCl; (3) the protein synthesis inhibitor cycloheximide, does not significantly modify the effect of T3; (4) addition of Co2+, nifedipine, verapamil, or omega-conotoxin in the medium, at a concentration which does not modify the TSH response to TRH, reverses the T3 potentiation of that response. We also tested whether T3 would change intracellular concentrations of Ca2+, by measuring [Ca2+]i with fura-2 imaging on primary cultures of dispersed pituitary cells, either in basal conditions or after stimulation by TRH or/and T3. Both substances induced a fast increase of [Ca2+]i, with a peak at 15 s, followed by a subsequent progressive decay with TRH and a rapid return with T3. Our data suggest that T3 enhances TRH-induced TSH release by a protein synthesis-independent and Ca(2+)-dependent phenomenon, probably due to an increase in Ca2+ entry through the activation of dihydropyridine- and omega-conotoxin-sensitive Ca2+ channels. They also show that T3 may acutely enhance [Ca2+]i in pituitary cells. These findings support the idea of the occurrence of a prompt and stimulatory role of T3 at the plasma membrane level in normal rat pituitary gland.
ISSN:0922-4106
0014-2999
DOI:10.1016/0922-4106(95)90096-9