Loading…
Sintering effects on the strength of hydroxyapatite
Mechanisms underlying temperature-strength interrelations for dense (> 95% dense, pores closed) hydroxyapatite (HAp) were investigated by comparative assessment of temperature effects on tensile strength, Weibull modulus, apparent density, decomposition (HAp:tricalcium phosphate ratio), dehydroxy...
Saved in:
Published in: | Biomaterials 1995, Vol.16 (5), p.409-415 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mechanisms underlying temperature-strength interrelations for dense (> 95% dense, pores closed) hydroxyapatite (HAp) were investigated by comparative assessment of temperature effects on tensile strength, Weibull modulus, apparent density, decomposition (HAp:tricalcium phosphate ratio), dehydroxylation and microstructure. Significant dehydroxylation occurred above ~800 °C. Strength peaked at ~80 MPa just before the attainment of closed porosity (~95% dense). For higher temperatures (closed porosity), the strength dropped sharply to ~60 MPa due to the closure of dehydroxylation pathways, and then stabilized at ~60 MPa. At very high temperatures (> 1350 °C), the strength dropped catastrophically to ~10 MPa corresponding to the decomposition of HAp to tricalcium phosphate and the associated sudden release of the remaining bonded water. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/0142-9612(95)98859-C |