Loading…

Excitatory amino acid induced currents of isolated murine hypothalamic neurons and their suppression by 2,3-butanedione monoxime

Ionic currents induced by excitatory amino acids were investigated for freshly isolated murine hypothalamic neurons with whole cell recording techniques. L-glutamate or N-methyl-D-aspartate (NMDA), in combination with glycine, resulted in a rapidly rising current which decayed in the continued prese...

Full description

Saved in:
Bibliographic Details
Published in:Neuropharmacology 1995-10, Vol.34 (10), p.1259-1272
Main Authors: Ye, J.-H., McArdle, J.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ionic currents induced by excitatory amino acids were investigated for freshly isolated murine hypothalamic neurons with whole cell recording techniques. L-glutamate or N-methyl-D-aspartate (NMDA), in combination with glycine, resulted in a rapidly rising current which decayed in the continued presence of agonist. In contrast, kainate currents did not decay. While quisqualate-induced current maintained a steady amplitude in the continued presence of agonist, a rapid decay phase appeared at holding potentials negative to − 50 mV. Co-application of 2,3-butanedione monoxime (BDM) reversibly inhibited the currents due to each agonist. Detailed study of BDM suppression of kainate-induced current revealed two components. A component with a rapid onset did not involve phosphatase action since 500 μMATP-γ-S or a protein kinase inhibitor (H-7, 200 μM) did not alter current suppression or recovery after BDM. Thus, the probable mechanism for this component of BDM 's effect is direct block of the kainate-activated ion channel. However, preincubating neurons with 30 mM BDM reduced their subsequent response to kainate alone. This persistent effect of BDM was not seen for neurons dialyzed with a solution containing ATP-γ-S during conventional whole cell recording. Furthermore, exposure to H-7 prevented recovery of the kainate response suppressed by preincubation in BDM. These findings suggest that BDM causes sustained suppression of the kainate response of hypothalamic neurons via a “chemical phosphatase” action.
ISSN:0028-3908
1873-7064
DOI:10.1016/0028-3908(95)00100-K