Loading…

Monensin stimulates glycerolipid incorporation into rod outer segment membranes

Monensin is an ionophore which disrupts the structure of the Golgi apparatus and inhibits vesicular transport in eukaryotic cells. In this study, we examined the effects of monensin on the incorporation of newly synthesized glycerolipids into retinal rod outer segment (ROS) membranes. Frog retinas w...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1987-12, Vol.262 (36), p.17516-17523
Main Authors: Fliesler, S J, Basinger, S F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monensin is an ionophore which disrupts the structure of the Golgi apparatus and inhibits vesicular transport in eukaryotic cells. In this study, we examined the effects of monensin on the incorporation of newly synthesized glycerolipids into retinal rod outer segment (ROS) membranes. Frog retinas were incubated in the presence or absence of monensin (50 nM) with either [1,2,3-3H]glycerol or [9,10-3H]palmitic acid as radiolabeled substrate. Total lipids were extracted from retinas and ROS membranes and resolved into individual phospholipid classes and neutral lipids by thin-layer chromatography. In the presence of monensin, the specific activity of ROS phospholipids was increased about 2-fold with [3H]glycerol and nearly 3-fold with [3H]palmitate as substrates relative to controls. In contrast, the specific activity of total retinal lipids, the relative incorporation of label into ROS and retinal phospholipids, and the total lipid phosphorous content of ROS membranes and retinas were not significantly different from control values. These data suggest that the enhanced labeling of ROS phospholipids in the presence of monensin was due to altered intracellular routing of lipids rather than increased glycerolipid synthesis. Under the same conditions, total retinal protein synthesis was about 90% of control, but light microscopic autoradiography indicated that newly synthesized proteins were not transported to the ROS for assembly into disc membranes. Thus, newly synthesized glycerolipids can be delivered to the ROS by a mechanism which is independent of protein transport to that cellular compartment.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)45411-7