Loading…
Interpretation of Transient-State Kinetic Isotope Effects
In contrast to steady-state kinetic isotope effects (KIE's), transient-state KIE's are dependent on both time and signal source. We developed a theory which predicts the behavior of transient-state KIE's, permits the calculation of the intrinsic KIE, and makes possible the assignment...
Saved in:
Published in: | Biochemistry (Easton) 1996-01, Vol.35 (1), p.83-88 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In contrast to steady-state kinetic isotope effects (KIE's), transient-state KIE's are dependent on both time and signal source. We developed a theory which predicts the behavior of transient-state KIE's, permits the calculation of the intrinsic KIE, and makes possible the assignment of various optical signals to either pre- or post-hydride transfer events. We proved that the behavior of KIEobs for a reversible two-step reaction for all possible values of the rate constants and all possible ratios of intermediate and product contributions obeys three simple rules (assuming that the isotope-sensitive step involves a hydride transfer):  (1) If only the post-hydride species contributes to the observed signal, KIEobs = KIEint at t = 0 and then decreases with time. (2) If only the pre-hydride species contributes to the observed signal, then KIEobs = 1 at t = 0 and then decreases with time. (3) If both pre- and post-hydride species contribute to the observed signal, then KIEobs = 1 at t = 0 and then will either rise or fall with time depending on the relative molar signal coefficients of the pre- and post-hydride species. We provide experimental evidence that the phenomena predicted by this theory do in fact occur in enzyme-catalyzed reactions. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi9509107 |