Loading…
Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis
A subset of individuals with familial amyotrophic lateral sclerosis (FALS) possesses dominantly inherited mutations in the gene that encodes copper-zinc superoxide dismutase (CuZnSOD). A4V and G93A, two of the mutant enzymes associated with FALS, were shown to catalyze the oxidation of a model subst...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1996-01, Vol.271 (5248), p.515-518 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A subset of individuals with familial amyotrophic lateral sclerosis (FALS) possesses dominantly inherited mutations in the gene that encodes copper-zinc superoxide dismutase (CuZnSOD). A4V and G93A, two of the mutant enzymes associated with FALS, were shown to catalyze the oxidation of a model substrate (spin trap 5,5′-dimethyl-1-pyrroline N-oxide) by hydrogen peroxide at a higher rate than that seen with the wild-type enzyme. Catalysis of this reaction by A4V and G93A was more sensitive to inhibition by the copper chelators diethyldithiocarbamate and penicillamine than was catalysis by wild-type CuZnSOD. The same two chelators reversed the apoptosis-inducing effect of mutant enzymes expressed in a neural cell line. These results suggest that oxidative reactions catalyzed by mutant CuZnSOD enzymes initiate the neuropathologic changes in FALS. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.271.5248.515 |