Loading…

Use of Cultured Cells to Study the Relationship Between Arachidonic Acid and Endothelium-Derived Relaxing Factor

We have used mixedand co-cultures of endothelial and vascular smooth muscle cells to investigate the role of phospholipase activation and arachidonic acid metabolites in the production of endothelium-derived relaxing factor (EDRF). Inhibition of phospholipase A2with para-bromophenacyl bromide, dexam...

Full description

Saved in:
Bibliographic Details
Published in:The American journal of the medical sciences 1988-04, Vol.295 (4), p.287-292
Main Authors: Johns, Roger A., Izzo, Nicholas J., Milner, Peter J., Loeb, Alex L., Peach, Michael J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have used mixedand co-cultures of endothelial and vascular smooth muscle cells to investigate the role of phospholipase activation and arachidonic acid metabolites in the production of endothelium-derived relaxing factor (EDRF). Inhibition of phospholipase A2with para-bromophenacyl bromide, dexamethasone or quinacrine, alone or in combination, blocked arachidonate release by 50%-60% but had no effect on EDRF production as assessed by cyclic GMP accumulation in mixedor co-cultures of endothelial and vascular smooth muscle cells. Inhibition of the phospholipase C-diacylglycerol (DAG) lipase pathway of arachidonate release by the DAG lipase inhibitor RHC-80267 also caused partial inhibition of arachidonate release and had no effect on EDRF. When both phospholipase A2 and phospholipase C pathways for arachidonate mobilization were inhibited (dexamethasone + RHC 80267), arachidonate release was totally inhibited while EDRF release remained intact. We conclude that neither phospholipase activation nor arachidonate mobilization is required for EDRF release from cultured bovine endothelial cells.
ISSN:0002-9629
1538-2990
DOI:10.1097/00000441-198804000-00012