Loading…

Kinetic Analysis of the Catalytic Domain of Human Cdc25B

The Cdc25 cell cycle regulator is a member of the dual-specificity class of protein-tyrosine phosphatases that hydrolyze phosphotyrosine- and phosphothreonine-containing substrates. To study the mechanism of Cdc25B, we have overexpressed and purified the catalytic domain of human Cdc25B (Xu, X., and...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1996-11, Vol.271 (44), p.27445-27449
Main Authors: Gottlin, Elizabeth B., Xu, Xu, Epstein, David M., Burke, Shannon P., Eckstein, Jens W., Ballou, David P., Dixon, Jack E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Cdc25 cell cycle regulator is a member of the dual-specificity class of protein-tyrosine phosphatases that hydrolyze phosphotyrosine- and phosphothreonine-containing substrates. To study the mechanism of Cdc25B, we have overexpressed and purified the catalytic domain of human Cdc25B (Xu, X., and Burke, S. P. (1996) J. Biol. Chem. 271, 5118-5124). In the present work, we have analyzed the kinetic properties of the Cdc25B catalytic domain using the artificial substrate 3-O-methylfluorescein phosphate (OMFP). Steady-state kinetic analysis indicated that the kcat/Km for OMFP hydrolysis is almost 3 orders of magnitude greater than that for p-nitrophenyl phosphate hydrolysis. Like other dual-specificity phosphatases, Cdc25 exhibits a two-step catalytic mechanism, characterized by formation and breakdown of a phosphoenzyme intermediate. Pre-steady-state kinetic analysis of OMFP hydrolysis indicated that formation of the phosphoenzyme intermediate is ∼20 times faster than subsequent phosphoenzyme breakdown. The resulting burst pattern of product formation allowed us to derive rate constants for enzyme phosphorylation (26 s−1) and dephosphorylation (1.5 s−1) as well as the dissociation constant for OMFP (0.3 mM). Calculations suggest that OMFP binds with higher affinity and reacts faster with Cdc25B than does p-nitrophenyl phosphate. OMFP is a highly efficient substrate for the dual-specificity protein-tyrosine phosphatases VHR and rVH6, but not for two protein-tyrosine phosphatases, PTP1 and YOP. The ability to observe distinct phases of the reaction mechanism during OMFP hydrolysis will facilitate future analysis of critical catalytic residues in Cdc25 and other dual-specificity phosphatases.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.271.44.27445