Loading…
Thyrotropin-releasing hormone-induced rise in cytosolic calcium and activation of outward K+ current monitored simultaneously in individual GH3B6 pituitary cells
Thyrotropin-releasing hormone (TRH) acts on pituitary cells to raise the cytosolic free Ca2+ concentration ([Ca2+]i) and causes simultaneously a transient hyperpolarization of the plasma membrane. The combination of the microfluorimetric monitoring of [Ca2+]i with electrophysiological recordings obt...
Saved in:
Published in: | The Journal of biological chemistry 1988-12, Vol.263 (36), p.19570-19576 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thyrotropin-releasing hormone (TRH) acts on pituitary cells to raise the cytosolic free Ca2+ concentration ([Ca2+]i) and causes simultaneously a transient hyperpolarization of the plasma membrane. The combination of the microfluorimetric monitoring of [Ca2+]i with electrophysiological recordings obtained using the patch clamp technique in its whole cell configuration, allows the analysis of the correlation between changes in [Ca2+]i and the alterations in ionic currents at the plasma membrane. It was shown that in the absence of hormone stimulation, a depolarization-induced change in steady state [Ca2+]i, as well as the internal perfusion with Ca2+ at microM levels at constant membrane potential led to the activation of outward K+ current. TRH stimulation resulted in a marked but transient rise in [Ca2+]i; concomitantly, there was an increase in membrane conductance and an enhancement of outward current. During the time course of an individual response, an excellent correlation between the changes in [Ca2+]i and those in conductance or current was observed. The relative changes of current and conductance during the TRH response were consistent with the activation of a single type of ionic current, the apparent reversal potential of which coincided with the equilibrium potential for K+. A strong correlation between the TRH-induced changes in [Ca2+]i and K+, conductance was demonstrated in a large number of cells with varied kinetic features: significant correlation coefficients were found both for the transition time from basal to maximal values (r = 0.85, p less than 0.001) as well as for the total duration of the responses (r = 0.68, p less than 0.002). It is concluded that during the early phase of TRH action, the hormone-induced rise in [Ca2+]i is the principal cause of enhanced K+ channel activation. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(19)77674-1 |