Loading…

Synthesis and Angiotensin II Receptor Antagonistic Activities of Benzimidazole Derivatives Bearing Acidic Heterocycles as Novel Tetrazole Bioisosteres

The design, synthesis, and biological activity of benzimidazole-7-carboxylic acids bearing 5-oxo-1,2,4-oxadiazole, 5-oxo-1,2,4-thiadiazole, 5-thioxo-1,2,4-oxadiazole, and 2-oxo-1,2,3,5-oxathiadiazole rings are described. These compounds were efficiently prepared from the key intermediates, the amido...

Full description

Saved in:
Bibliographic Details
Published in:Journal of medicinal chemistry 1996-12, Vol.39 (26), p.5228-5235
Main Authors: Kohara, Yasuhisa, Kubo, Keiji, Imamiya, Eiko, Wada, Takeo, Inada, Yoshiyuki, Naka, Takehiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design, synthesis, and biological activity of benzimidazole-7-carboxylic acids bearing 5-oxo-1,2,4-oxadiazole, 5-oxo-1,2,4-thiadiazole, 5-thioxo-1,2,4-oxadiazole, and 2-oxo-1,2,3,5-oxathiadiazole rings are described. These compounds were efficiently prepared from the key intermediates, the amidoximes 4. The synthesized compounds were evaluated for in vitro and in vivo angiotensin II (AII) receptor antagonistic activities. Most were found to have high affinity for the AT1 receptor (IC50 value, 10-6−10-7M) and to inhibit the AII-induced pressor response (more than 50% inhibition at 1 mg/kg po). The 5-oxo-1,2,4-oxadiazole, 5-oxo-1,2,4-thiadiazole, and 5-thioxo-1,2,4-oxadiazole derivatives showed stronger inhibitory effects than the corresponding tetrazole derivatives, while their binding affinities were weaker. This might be ascribed to their improved bioavailability by increased lipophilicity. The 5-oxo-1,2,4-oxadiazole derivative 2 (TAK-536) and 5-oxo-1,2,4-thiadiazole derivative 8f showed efficient oral bioavailability without prodrug formation. This study showed that the 5-oxo-1,2,4-oxadiazole ring and its thio analog, the 5-oxo-1,2,4-thiadiazole ring, could be lipophilic bioisosteres for the tetrazole ring in nonpeptide AII receptor antagonists.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm960547h