Loading…
Axial dispersion of granular material in horizontal rotating cylinders
The discrete element method is used to calculate axial dispersion coefficients for approximately monosized particles in a rotating horizontal cylinder. Axial dispersion within the cylinder is shown to follow Fick's second law, in that the mean squared deviation of axial position of a pulse of p...
Saved in:
Published in: | Powder technology 2010-11, Vol.203 (3), p.510-517 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The discrete element method is used to calculate axial dispersion coefficients for approximately monosized particles in a rotating horizontal cylinder. Axial dispersion within the cylinder is shown to follow Fick's second law, in that the mean squared deviation of axial position of a pulse of particles is proportional to time. The axial dispersion coefficient is found to depend on the particle size, gravity and drum rotation speed, allowing a dimensionless group to be formed using these four quantities. For sufficiently large cylinders, the axial dispersion coefficient is found to be independent of drum diameter. A general argument is given which suggests that axial dispersion in physical beds of approximately monosized particles should follow Fick's second law.
Discrete element method calculations with approximately monosized particles in a horizontal rotating cylinder with wall rougheners give axial dispersion which follows Fick's second law. A general argument is given which suggests that this should be so. For cylinders of sufficiently large diameter, axial dispersion is found to depend on particle size, gravity, and rotation speed.
[Display omitted] |
---|---|
ISSN: | 0032-5910 1873-328X |
DOI: | 10.1016/j.powtec.2010.06.017 |