Loading…
cdc2 links the Drosophila cell cycle and asymmetric division machineries
Asymmetric cell divisions can be mediated by the preferential segregation of cell-fate determinants into one of two sibling daughters. In Drosophila neural progenitors, Inscuteable, Partner of Inscuteable and Bazooka localize as an apical cortical complex at interphase, which directs the apical-basa...
Saved in:
Published in: | Nature (London) 2001-02, Vol.409 (6823), p.1063-1067 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Asymmetric cell divisions can be mediated by the preferential segregation of cell-fate determinants into one of two sibling daughters. In Drosophila neural progenitors, Inscuteable, Partner of Inscuteable and Bazooka localize as an apical cortical complex at interphase, which directs the apical-basal orientation of the mitotic spindle as well as the basal/cortical localization of the cell-fate determinants Numb and/or Prospero during mitosis. Although localization of these proteins shows dependence on the cell cycle, the involvement of cell-cycle components in asymmetric divisions has not been demonstrated. Here we show that neural progenitor asymmetric divisions require the cell-cycle regulator cdc2. By attenuating Drosophila cdc2 function without blocking mitosis, normally asymmetric progenitor divisions become defective, failing to correctly localize asymmetric components during mitosis and/or to resolve distinct sibling fates. cdc2 is not necessary for initiating apical complex formation during interphase; however, maintaining the asymmetric localization of the apical components during mitosis requires Cdc2/B-type cyclin complexes. Our findings link cdc2 with asymmetric divisions, and explain why the asymmetric localization of molecules like Inscuteable show cell-cycle dependence. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/35059124 |