Loading…
Bymixer provides on-line calibration of measurement of CO2 volume exhaled per breath
The measurement of CO2 volume exhaled per breath (VCO2.br) can be determined during anesthesia by the multiplication and integration of tidal flow (V) and PCO2. During side-stream capnometry, PCO2 must be advanced in time by transport delay (TD), the time to suction gas through the sampling tube. Du...
Saved in:
Published in: | Annals of biomedical engineering 1997, Vol.25 (1), p.164-171 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The measurement of CO2 volume exhaled per breath (VCO2.br) can be determined during anesthesia by the multiplication and integration of tidal flow (V) and PCO2. During side-stream capnometry, PCO2 must be advanced in time by transport delay (TD), the time to suction gas through the sampling tube. During ventilation, TD can vary due to sample line connection internal volume or flow rate changes. To determine correct TD and measure accurate VCO2.br during actual ventilation. TD can be iteratively adjusted (TDADJ) until VCO2-br/tidal volume equals PCO2 measured in a mixed expired gas collection (PECO2) (J Appl. Physiol. 72:2029-2035, 1992). However. PECO2 is difficult to measure during anesthesia because CO2 is absorbed in the circle circuit. Accordingly, we implemented a bypass flow-mixing chamber device (bymixer) that was interposed in the expiration limb of the circle circuit and accurately measured PECO2 over a wide range of conditions of ventilation of a test lung-metabolic chamber (regression slope = 1.01: R2 = 0.99). The bymixer response (time constant) varied from 18.1 +/- 0.03 sec (12.5 l/min ventilation) to 66.7 +/- 0.9 sec (2.5 l/min). Bymixer PECO2 was used to correctly determine TDADJ (without interrupting respiration) to enable accurate measurement of VCO2.br over widely changing expiratory flow patterns. |
---|---|
ISSN: | 0090-6964 1573-9686 |
DOI: | 10.1007/BF02738547 |