Loading…

[125I]Iberiotoxin-D19Y/Y36F, the First Selective, High Specific Activity Radioligand for High-Conductance Calcium-Activated Potassium Channels

Iberiotoxin (IbTX), a selective peptidyl ligand for high-conductance Ca2+-activated K+ (maxi-K) channels cannot be radioiodinated in biologically active form due to the importance of Y36 in interacting with the channel pore. Therefore, an IbTX double mutant (IbTX-D19Y/Y36F) was engineered, expressed...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1997-02, Vol.36 (7), p.1943-1952
Main Authors: Koschak, Alexandra, Koch, Robert O, Liu, Jessica, Kaczorowski, Gregory J, Reinhart, Peter H, Garcia, Maria L, Knaus, Hans-Günther
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iberiotoxin (IbTX), a selective peptidyl ligand for high-conductance Ca2+-activated K+ (maxi-K) channels cannot be radioiodinated in biologically active form due to the importance of Y36 in interacting with the channel pore. Therefore, an IbTX double mutant (IbTX-D19Y/Y36F) was engineered, expressed in Escherichia coli, purified to homogeneity, and radiolabeled to high specific activity with 125I. IbTX-D19Y/Y36F and [127I]IbTX-D19Y/Y36F block maxi-K channels expressed in Xenopus laevis oocytes with equal potency as wild-type IbTX (K d ∼ 1 nM). Under low ionic strength conditions, [125I]IbTX-D19Y/Y36F binds with high affinity to smooth muscle sarcolemmal maxi-K channels (K d of 5 pM, as determined by either equilibrium binding or kinetic binding analysis), and with a binding site density of 0.45 pmol/mg of protein. Competition studies with wild-type IbTX, IbTX-D19Y/Y36F or charybdotoxin (ChTX) result in complete inhibition of binding whereas toxins selective for voltage-gated K+ channels (margatoxin (MgTX) or α-dendrotoxin (α-DaTX)) do not have any effect on IbTX binding. Indole diterpene alkaloids, which are selective inhibitors of maxi-K channels, and potassium ions both modulate [125I]IbTX-D19Y/Y36F binding in a complex manner. This pattern is also reflected during covalent incorporation of the radiolabeled toxin into the 31 kDa β-subunit of the maxi-K channel in the presence of a bifunctional cross-linking reagent. In rat brain membranes, IbTX-D19Y/Y36F does not displace binding of [125I]MgTX or [125I]-α-DaTX to sites associated with voltage-gated K+ channels, nor do these latter toxins inhibit [125I]IbTX-D19Y/Y36F binding. Taken together, these results demonstrate that [125I]IbTX-D19Y/Y36F is the first selective radioligand for maxi-K channels with high specific activity.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi962074m