Loading…

Finite element modeling and experimental verification of lower extremity shape change under load

Prediction and measurement of residuum shape change inside the prosthesis under various loading conditions is important for prosthesis design and evaluation. Residual limb surface measurements with the prosthesis in situ were used for construction of a finite element model (FEM). These surface measu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 1997-05, Vol.30 (5), p.531-536
Main Authors: Commean, P.K., Smith, K.E., Vannier, M.W., Szabo, B.A., Actis, R.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prediction and measurement of residuum shape change inside the prosthesis under various loading conditions is important for prosthesis design and evaluation. Residual limb surface measurements with the prosthesis in situ were used for construction of a finite element model (FEM). These surface measurements were obtained from volumetric computed tomography. A new experimental method for modeling the shape of the in situ lower residual limb was developed based on spiral X-ray computed tomography (SXCT) imaging. The p-version of the finite element method was used for estimating the material properties from known load and displacement data. A homogeneous, isotropic, linear constitutive model with accommodation of the constitutive soft and hard tissues of the residuum was evaluated with static axial loading applied to the in situ prosthesis and compared with experimental results obtained in a human volunteer. Two FEMs were created for similar coronal cross sections of the below knee residuum under two loading conditions. Agreement between observed (from SXCT) and predicted (from FEA) residual limb shape changes inside the prosthesis were maximized with a single modulus of elasticity for the residuum soft tissue of 0.06 MPa, consistent with previously published results. This methodology provides a framework to predict and objectively evaluate FEMs and determine residuum material properties by inverse methods.
ISSN:0021-9290
1873-2380
DOI:10.1016/S0021-9290(96)00179-0