Loading…

Differential Regulation of Phenylalanine Ammonia-lyase Genes During Plant Development and by Environmental Cues

Phenylalanine ammonia-lyase (PAL) catalyzes the first reaction in the biosynthesis from phenylalanine of a wide variety of phenylpropanoid natural products including lignin, flavonoid pigments, and phytoalexins. In bean (Phaseolus vulgaris L.), PAL is encoded by a family of three genes. We show here...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1989-08, Vol.264 (24), p.14486-14492
Main Authors: Liang, X W, Dron, M, Cramer, C L, Dixon, R A, Lamb, C J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phenylalanine ammonia-lyase (PAL) catalyzes the first reaction in the biosynthesis from phenylalanine of a wide variety of phenylpropanoid natural products including lignin, flavonoid pigments, and phytoalexins. In bean (Phaseolus vulgaris L.), PAL is encoded by a family of three genes. We show here by RNase protection with gene-specific probes that these genes are expressed differentially during development and in response to different environmental cues. While all three genes are expressed at high levels in roots, only PAL1 and PAL2 are expressed in shoots and only PAL1 is expressed in leaves. Strikingly, PAL2 is expressed at very high levels in petals, where PAL1 is only very weakly expressed and PAL3 is not expressed. All three genes are induced by mechanical wounding of hypocotyls, but fungal infection only activates PAL1 and PAL3. Illumination of etiolated hypocotyls activates PAL1 and PAL2 but not PAL3. Corresponding differential patterns of synthesis of specific PAL polypeptide isoforms were observed by two-dimensional gel electrophoretic analysis of in vitro translation products encoded by RNA isolated from hypocotyls stimulated by light, wounding, or infection. The specific isoforms encoded by transcripts of the three PAL genes were identified by inhibition of synthesis in vitro with gene-specific anti-sense transcripts followed by comparative two-dimensional gel electrophoretic analysis of the pattern of translation products. These data indicate that selective expression of PAL genes encoding functional variants is governed by a complex set of regulatory networks for developmental and environmental control of phenylpropanoid biosynthesis.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)71704-3