Loading…
Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes
We used a stopped-flow method for determining the kinetic properties (between 10 ms and 10 s) of the Ca2+ release induced by inositol 1,4,5-trisphosphate (InsP3) in saponin-treated rat hepatocytes. Preliminary experiments ensured that the indicator was able to monitor rapid changes in free Ca2+ reli...
Saved in:
Published in: | The Journal of biological chemistry 1989-10, Vol.264 (30), p.17665-17673 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We used a stopped-flow method for determining the kinetic properties (between 10 ms and 10 s) of the Ca2+ release induced by inositol 1,4,5-trisphosphate (InsP3) in saponin-treated rat hepatocytes. Preliminary experiments ensured that the indicator was able to monitor rapid changes in free Ca2+ reliably. At 20 °C, a maximally efficient concentration of 10 µM InsP3 released Ca2+ with a half-time of 150–300 ms, the initial rate being about 1–2 nmol of Ca2+/mg of cell protein/s. The delay between the addition of 10 µM InsP3 and the onset of Ca2+ release was shorter than 20 ms, suggesting that the opening process of Ca2+ channels after binding of InsP3 to receptors is completed within a few milliseconds. Half-maximal initial rates for Ca2+ release occurred at about 1 µM InsP3 (Hill index was 1.6). The resulting Ca2+ efflux had a moderate temperature dependence. It could not be fitted to a single exponential. After low speed centrifugation of saponin-treated cells (1000 × g for 1 min), part of the InsP3-sensitive Ca2+ pool was recovered in the cell-free supernatant fraction, suggesting that the response to InsP3 arises from a vesicular fraction which may diffuse from the saponin-treated cells into the medium. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(19)84623-9 |