Loading…

Interaction of Phosphorylated Tryptophan Hydroxylase with 14-3-3 Proteins

Rabbit brain tryptophan hydroxylase (TPH) has been expressed in insect cells (Spodoptera frugiperda) as a histidine-tagged enzyme. The specific activity of the purified fusion enzyme is 80 nmol of 5-hydroxytryptophan/min/mg. Multifunctional regulatory 14-3-3 proteins were purified from fresh bovine...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1997-10, Vol.272 (42), p.26219-26225
Main Authors: Banik, Utpal, Wang, Guo-An, Wagner, Paul D., Kaufman, Seymour
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rabbit brain tryptophan hydroxylase (TPH) has been expressed in insect cells (Spodoptera frugiperda) as a histidine-tagged enzyme. The specific activity of the purified fusion enzyme is 80 nmol of 5-hydroxytryptophan/min/mg. Multifunctional regulatory 14-3-3 proteins were purified from fresh bovine brain. Phosphorylation and 14-3-3 proteins play important roles in the regulation of TPH activity. We have found that phosphorylation of TPH by cAMP-dependent protein kinase increased the activity of the hydroxylase by 25–30% and that 14-3-3 proteins increased the hydroxylase activity of phosphorylated TPH by ∼45%. Under these conditions, the 14-3-3 proteins were not phosphorylated, and unphosphorylated TPH was not activated by 14-3-3 proteins. Surface plasmon resonance analysis demonstrated that 14-3-3 proteins bind to phosphorylated TPH with an affinity constant (Ka ) of 4.5 × 107m−1. Binding studies using affinity chromatography also showed that 14-3-3 proteins interact with phosphorylated TPH. The dephosphorylation of TPH by protein phosphatase-1 was inhibited by 14-3-3 proteins. Our results demonstrate that 14-3-3 proteins form a complex with phosphorylated brain TPH, thereby increasing its enzymatic activity and inhibiting its dephosphorylation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.272.42.26219