Loading…

Three-Dimensional Structure of Leucocin A in Trifluoroethanol and Dodecylphosphocholine Micelles:  Spatial Location of Residues Critical for Biological Activity in Type IIa Bacteriocins from Lactic Acid Bacteria

The first three-dimensional structure of a type IIa bacteriocin from lactic acid bacteria is reported. Complete 1H resonance assignments of leucocin A, a 37 amino acid antimicrobial peptide isolated from the lactic acid bacterium Leuconostoc gelidum UAL187, were determined in 90% trifluoroethanol (T...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1997-12, Vol.36 (49), p.15062-15072
Main Authors: Fregeau Gallagher, Nancy L., Sailer, Miloslav, Niemczura, Walter P., Nakashima, Thomas T., Stiles, Michael E., Vederas, John C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The first three-dimensional structure of a type IIa bacteriocin from lactic acid bacteria is reported. Complete 1H resonance assignments of leucocin A, a 37 amino acid antimicrobial peptide isolated from the lactic acid bacterium Leuconostoc gelidum UAL187, were determined in 90% trifluoroethanol (TFE)−water and in aqueous dodecylphosphocholine (DPC) micelles (1:40 ratio of leucocin A:DPC) using two-dimensional NMR techniques (e.g., DQF-COSY, TOCSY, NOESY). Circular dichroism spectra, NMR chemical shift indices, amide hydrogen exchange rates, and long-range nuclear Overhauser effects indicate that leucocin A adopts a reasonably well defined structure in both TFE and DPC micelle environments but exists as a random coil in water or aqueous DMSO. Distance geometry and simulated annealing calculations were employed to generate structures for leucocin A in both lipophilic media. While some differences were noted between the structures calculated for the two different solvent systems, in both, the region encompassing residues 17−31 assumes an essentially identical amphiphilic α-helix conformation. A three-strand antiparallel β-sheet domain (residues 2−16), anchored by the disulfide bridge, is also observed in both media. In TFE, these two regions have a more defined relationship relative to each other, while, in DPC micelles, the C-terminus is folded back onto the α-helix. The implications of these structural features with regard to the antimicrobial mechanism of action and target recognition are discussed.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi971263h