Loading…

Bioavailability of iron-milk-protein complexes and fortified cheddar cheese

Iron fortification is used to increase dietary iron intake. Dairy products are widely consumed but contain almost no iron. Cheddar cheese was fortified with ferric chloride or iron-casein, ferripolyphosphate-whey protein, and iron-whey protein complexes. Hemoglobin regeneration efficiency was determ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 1989-11, Vol.72 (11), p.2845-2855
Main Authors: Zhang, D.J. (Utah State University, Logan, UT), Mahoney, A.W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron fortification is used to increase dietary iron intake. Dairy products are widely consumed but contain almost no iron. Cheddar cheese was fortified with ferric chloride or iron-casein, ferripolyphosphate-whey protein, and iron-whey protein complexes. Hemoglobin regeneration efficiency was determined to evaluate iron bioavailability. Maximal and basal iron bioavailabilities were measured in anemic weanling rats fed low iron diets (about 22 mg iron/kg) and normal adult rats fed high iron diets (about 145 mg iron/kg) of iron density (32 mg iron/1000 kcal) found in some high iron human diets. Maximal iron bioavailabilities for ferric chloride or iron-casein, ferripolyphosphate-whey protein, and iron-whey protein complexes were 85, 71, 73, and 72%, respectively, and for the respective iron-fortified cheeses they were 75, 66, 74, and 67%. Differences were not significant in maximal iron bioavailabilities among iron sources and between fortified cheeses and fortification iron sources. Basal iron bioavailabilities for 10-d feeding of the respective fortification iron sources were 5, 8, 6 and 7%, respectively, and 4, 4, 3, and 3% for 14 d feeding; the differences among the iron sources were not significant. Maximal and basal iron bioavailabilities of ferrous sulfate were 85 and 5%, respectively. Practical implications of these observations are discussed.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.S0022-0302(89)79433-9