Loading…

Addition of catfish gonadotropin-releasing hormone (GnRH) receptor intracellular carboxyl-terminal tail to rat GnRH receptor alters receptor expression and regulation

Mammalian GnRH receptor (GnRHR) is unique among G protein-coupled seven-transmembrane segment receptors due to the absence of an intracellular C-terminal tail frequently important for internalization and/or desensitization of other G protein-coupled receptors. The recent cloning of nonmammalian (i.e...

Full description

Saved in:
Bibliographic Details
Published in:Molecular endocrinology (Baltimore, Md.) Md.), 1998-02, Vol.12 (2), p.161-171
Main Authors: Lin, X, Janovick, J A, Brothers, S, Blömenrohr, M, Bogerd, J, Conn, P M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mammalian GnRH receptor (GnRHR) is unique among G protein-coupled seven-transmembrane segment receptors due to the absence of an intracellular C-terminal tail frequently important for internalization and/or desensitization of other G protein-coupled receptors. The recent cloning of nonmammalian (i.e. catfish, goldfish, frog, and chicken) GnRHRs shows that these contain an intracellular C terminus. Addition of the 51-amino acid intracellular C terminus from catfish GnRHR (cfGnRHR) to rat GnRHR (rGnRHR) did not affect rGnRHR binding affinity but elevated receptor expression by about 5-fold. Truncation of the added C terminus impaired the elevated receptor-binding sites by 3- to 8-fold, depending on the truncation site. In addition, introducing the C terminus to rGnRHR altered the pattern of receptor regulation from biphasic down-regulation and recovery to monophasic down-regulation. The extent of down-regulation was also enhanced. The alteration in receptor regulation due to the addition of a C terminus was reversed by truncation of the added C terminus. Furthermore, addition of the cfGnRHR C terminus to rGnRHR significantly augmented the inositol phospholipid (IP) response of transfected cells to Buserelin, but this did not result from the elevation of receptor-binding sites. Addition of the C terminus did not affect Buserelin-stimulated cAMP and PRL release. GH3 cells transfected with wild-type cfGnRHR did not show measurable Buserelin binding or significant stimulation of IP, cAMP, or PRL in response to Buserelin (10[-13]-10[-9] M). GH3 cells transfected with C terminus-truncated cfGnRHR showed no IP response to Buserelin (10[-13]-10[-7] M). These results suggest that addition of the cfGnRHR intracellular C terminus to rGnRHR has a significant impact on rGnRHR expression and regulation and efficiency of differential receptor coupling to G proteins.
ISSN:0888-8809
DOI:10.1210/me.12.2.161