Loading…

The effects of nucleotides and potassium channel openers on the SUR2A/Kir6.2 complex K+ channel expressed in a mammalian cell line, HEK293T cells

The effects of potassium channel opening drugs and intracellular nucleotides on the ATP-sensitive K+ (KATP) channel composed of SUR2A and Kir6.2 in HEK293T cells were examined using the patch-clamp technique. The SUR2A/Kir6.2 channel was activated effectively by pinacidil, marginally by nicorandil b...

Full description

Saved in:
Bibliographic Details
Published in:Pflügers Archiv 1998-04, Vol.435 (5), p.595-603
Main Authors: Okuyama, Y, Yamada, M, Kondo, C, Satoh, E, Isomoto, S, Shindo, T, Horio, Y, Kitakaze, M, Hori, M, Kurachi, Y
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effects of potassium channel opening drugs and intracellular nucleotides on the ATP-sensitive K+ (KATP) channel composed of SUR2A and Kir6.2 in HEK293T cells were examined using the patch-clamp technique. The SUR2A/Kir6.2 channel was activated effectively by pinacidil, marginally by nicorandil but not by diazoxide. The pinacidil-activated channel currents were inhibited by glibenclamide with a Ki value of 160 nM. Upon formation of inside-out (I-O) patches, spontaneous openings of the channels appeared, which were inhibited by intracellular ATP (ATPi) equipotently in the presence and in the absence of intracellular Mg2+ (Mg2+i). The channel activity ran-down gradually in I-O patches. The run-down channels could be reactivated by ATPi only in the presence of Mg2+i. Uridine 5'-diphosphate (UDP) antagonized the ATPi-mediated inhibition of the channel activity before run-down. After run-down, UDP activated the channel without antagonizing ATPi-mediated channel inhibition. Thus, the SUR2A/Kir6.2 reproduced the major properties of the native cardiac KATP channel well in terms of nucleotide regulation and pharmacology, and therefore can be a useful tool with which to elucidate the molecular mechanisms characterizing the KATP channel.
ISSN:0031-6768
1432-2013
DOI:10.1007/s004240050559