Loading…

Mechanical Stressing of Integrin Receptors Induces Enhanced Tyrosine Phosphorylation of Cytoskeletally Anchored Proteins

Physical forces play a fundamental role in the regulation of cell function in many tissues, but little is known about how cells are able to sense mechanical loads and realize signal transduction. Adhesion receptors like integrins are candidates for mechanotransducers. We used a magnetic drag force d...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1998-02, Vol.273 (9), p.5081-5085
Main Authors: Schmidt, C, Pommerenke, H, Dürr, F, Nebe, B, Rychly, J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Physical forces play a fundamental role in the regulation of cell function in many tissues, but little is known about how cells are able to sense mechanical loads and realize signal transduction. Adhesion receptors like integrins are candidates for mechanotransducers. We used a magnetic drag force device to apply forces on integrin receptors in an osteoblastic cell line and studied the effect on tyrosine phosphorylation as a biochemical event in signal transduction. Mechanical stressing of both the β1 and the α2 integrin subunit induced an enhanced tyrosine phosphorylation of proteins compared with integrin clustering. Application of cyclic forces with a frequency of 1 Hz was more effective than a continuous stress. Using Triton X-100 for cell extraction, we found that tyrosine-phosphorylated proteins became physically anchored to the cytoskeleton due to mechanical integrin loading. This cytoskeletal linkage was dependent on intracellular calcium. To see if mechanical integrin stressing induced further downstream signaling, we analyzed the activation of mitogen-activated protein (MAP) kinases and found an increased phosphorylation of MAP kinases due to mechanical stress. We conclude that integrins sense physical forces that control gene expression by activation of the MAP kinase pathway. The cytoskeleton may play a key role in the physical anchorage of activated signaling molecules, which enables the switch of physical forces to biochemical signaling events.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.9.5081