Loading…

Coexpression of a constitutively active plasma membrane calcium pump with GFP identifies roles for intracellular calcium in controlling cell sorting during morphogenesis in Dictyostelium

To examine the potential role of calcium in regulating Dictyostelium development, we reduced free cytosolic and total cell Ca2+ in Dictyostelium cells by expressing a constitutively active form of a human erythrocyte plasma membrane calcium pump. The pump-expressing cells lacked a thapsigargin-media...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 1998-04, Vol.196 (1), p.77-94
Main Authors: Cubitt, A B, Reddy, I, Lee, S, McNally, J G, Firtel, R A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To examine the potential role of calcium in regulating Dictyostelium development, we reduced free cytosolic and total cell Ca2+ in Dictyostelium cells by expressing a constitutively active form of a human erythrocyte plasma membrane calcium pump. The pump-expressing cells lacked a thapsigargin-mediated increase in cytoplasmic calcium, consistent with a reduced level of total cellular Ca2+. During aggregation, the cells initially formed a large number of aggregation centers, many of which coalesced to form mounds that were smaller than those of wild-type cells, and the cells did not exhibit the normal formation of elongated aggregation streams. The majority of the mounds either arrested at this stage with the formation of small protrusions or formed very aberrant finger-like structures, indicating an essential role for cellular calcium in morphogenesis. We used pump and wild-type cells differentially labeled by expressing different wavelength (green and blue) forms of green fluorescent protein and three-dimensional (3-D) reconstruction of serial fluorescent imaging to visualize the movement of pump and wild-type cells within the aggregate. The results showed that the pump cells exhibited very aberrant cell movement and sorting within the forming mound, suggesting that the reduced cytosolic calcium affects movement required for tip formation. When allowed to form chimeric organisms with wild-type cells, pump cells preferentially localized to two bands, one at the prestalk/prespore boundary and the other in the very posterior of the organism, suggesting that pump cells are unable to properly sort. Expression of the calcium pump had little effect on the induction of prestalk- or prespore-specific genes, whereas extended treatment with EGTA blocked induction of both classes of cell-type-specific genes. Our results suggest a role for intracellular Ca2+ in controlling cell sorting and morphogenesis in Dictyostelium.
ISSN:0012-1606
DOI:10.1006/dbio.1997.8831