Loading…

Platelet deposition studies on copolyether urethanes modified with poly(ethylene oxide)

Pellethane ® 2363 80A films and tubings were chemically modified and the effect of these modifications on platelet deposition was studied. Grafting of high molecular weight poly(ethylene oxide) and graft polymerization of methoxy poly(ethylene glycol) 400 methacrylate resulted in surfaces with a goo...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 1990-04, Vol.11 (3), p.200-205
Main Authors: Brinkman, E., Foot, A., van der Does, L., Bantjes, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pellethane ® 2363 80A films and tubings were chemically modified and the effect of these modifications on platelet deposition was studied. Grafting of high molecular weight poly(ethylene oxide) and graft polymerization of methoxy poly(ethylene glycol) 400 methacrylate resulted in surfaces with a good water wettability. The increased hydrophilicity of these modified surfaces could be demonstrated by contact angle measurements. The platelet deposition was investigated with tubings in a capillary flow system, using different types of perfusates. Platelet deposition from a buffer-containing perfusate on surfaces modified with either high molecular weight poly(ethylene oxide) or methoxy poly(ethylene glycol) 400 methacrylate was almost absent and less than on Pellethane 2363 80A. Using a citrated plasmacontaining perfusate the amount of deposited platelets on Pellethane 2363 80A modified with high molecular weight poly(ethylene oxide) was low and about the same as on unmodified surfaces. However, a marked reduced platelet deposition compared to unmodified Pellethane 2363 80A was found when the platelets were activated by Ca 2+ ionophore. The improved blood compatibility of the modified Pellethane 2363 80A tubings obviously indicates the favourable effect of the presence of grafted PEO on the surface.
ISSN:0142-9612
1878-5905
DOI:10.1016/0142-9612(90)90156-K